
  

  

% HAESE MATHEMATICS 

  

Analysis and 
approaches SL 

    
for use with 

IB Diploma Programme 

 



% HAESE MATHEMATICS 
  

  

Specialists in mathematics education 

o 

Mathematics 
Amalysis and| 
Approaches SL 

       
e Michael Haese 

4 \ Mark Humphries 

‘ 3 Chris Sangwin 

Ngoc Vo 

for use with 
IB Diploma 
Programme



MATHEMATICS: ANALYSIS AND APPROACHES SL 

Michael Haese B.Sc.(Hons.), Ph.D. 
Mark Humphries B.Sc.(Hons.) 
Chris Sangwin M.A., M.Sc., Ph.D. 

Ngoc Vo B.Ma.Sc. 

Published by Haese Mathematics 
152 Richmond Road, Marleston, SA 5033, AUSTRALIA 
Telephone: +61 8 8210 4666, Fax: +61 8 8354 1238 
Email: info@haesemathematics.com 
Web:  www.haesemathematics.com 

National Library of Australia Card Number & ISBN 978-1-925489-56-9 

© Haese & Harris Publications 2019 

First Edition 2019 

Editorial review by Denes Tilistyak (Western International School of Shanghai). 

Cartoon artwork by John Martin. 

Artwork by Brian Houston, Charlotte Frost, Yi-Tung Huang, and Nicholas Kellett-Southby. 

Typeset by Deanne Gallasch and Charlotte Frost. Typeset in Times Roman 10. 

Computer software by Yi-Tung Huang, Huda Kharrufa, Brett Laishley, Bronson Mathews, Linden May, 

Joshua Douglass-Molloy, Jonathan Petrinolis, and Nicole Szymanczyk. 

Production work by Sandra Haese, Bradley Steventon, Nicholas Kellett-Southby, Cashmere Collins-McBride, 

and Joseph Small. 

We acknowledge the contribution of Marjut Mdenpaé, Mal Coad, and Glen Whiffen, for material from previous 
courses which now appears in this book. The publishers wish to make it clear that acknowledging these 
individuals does not imply any endorsement of this book by any of them, and all responsibility for the content 
rests with the authors and publishers. 

Printed in China by Prolong Press Limited. 

This book has been developed independently from and is not endorsed by the International Baccalaureate 
Organization. International Baccalaureate, Baccalauréat International, Bachillerato Internacional, and IB are 

registered trademarks owned by the International Baccalaureate Organization. 

This book is copyright. Except as permitted by the Copyright Act (any fair dealing for the purposes of private 
study, research, criticism or review), no part of this publication may be reproduced, stored in a retrieval system, 
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, 
without the prior permission of the publisher. Enquiries to be made to Haese Mathematics. 

Copying for educational purposes: Where copies of part or the whole of the book are made under Part VB of 
the Copyright Act, the law requires that the educational institution or the body that administers it has given a 
remuneration notice to Copyright Agency Limited (CAL). For information, contact the Copyright Agency 
Limited. 

Acknowledgements: While every attempt has been made to trace and acknowledge copyright, the authors and 
publishers apologise for any accidental infringement where copyright has proved untraceable. They would be 
pleased to come to a suitable agreement with the rightful owner. 

Disclaimer: All the internet addresses (URLs) given in this book were valid at the time of printing. While the 
authors and publisher regret any inconvenience that changes of address may cause readers, no responsibility for 
any such changes can be accepted by either the authors or the publisher.



FOREWORD 

This book has been written for the International Baccalaureate Diploma Programme course Mathematics: 
Analysis and Approaches SL, for first teaching in August 2019, and first assessment in May 2021. 

This book is designed to complete the course in conjunction with the SL Mathematics 
Mathematics: Core Topics SL textbook. It is expected that students will 4 WALSE wATHEMATCS 
start using this book approximately 6-7 months into the two-year course, ! 
upon the completion of the Mathematics: Core Topics SL textbook. 

The Mathematics: Analysis and Approaches courses have a focus on 
algebraic rigour, and the book has been written with this focus in mind. 
The material is presented in a clear, easy-to-follow style, free from 
unnecessary distractions, while effort has been made to contextualise 
questions so that students can relate concepts to everyday use. 

Each chapter begins with an Opening Problem, offering an insight into the 
application of the mathematics that will be studied in the chapter. 
Important information and key notes are highlighted, while worked 
examples provide step-by-step instructions with concise and relevant 
explanations. Discussions, Activities, and Investigations are used 
throughout the chapters to develop understanding, problem solving, and 
reasoning. 

  

In this changing world of mathematics education, we believe that the contextual approach shown in this 
book, with the associated use of technology, will enhance the students’ understanding, knowledge and 
appreciation of mathematics, and its universal application. 

We welcome your feedback. 

Email:  info@haesemathematics.com Web:  www.haesemathematics.com 

PMH, MAH, CS, NV 
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ONLINE FEATURES 
With the purchase of a new textbook you will gain 24 months subscription to our online product. 

This subscription can be renewed for a small fee. 

Access is granted through SNOWFLAKE, our book viewing software that can be used in your web 

browser or may be installed to your tablet or computer. 

Students can revisit concepts taught in class and undertake their own revision and practice online. 

COMPATIBILITY 
For iPads, tablets, and other mobile devices, some of the interactive features may not work. However, 

the digital version of the textbook can be viewed online using any of these devices. 

REGISTERING 
You will need to register to access the online features of this textbook. 

Visit www.haesemathematics.com/register and follow the instructions. Once registered, you can: 

e activate your digital textbook 

e use your account to make additional purchases. 

To activate your digital textbook, contact Haese Mathematics. On providing proof of purchase, your 

digital textbook will be activated. It is important that you keep your receipt as proof of purchase. 

For general queries about registering and subscriptions: 

e Visit our SNOWFLAKE help page: https:/snowflake. haesemathematics.com.au/help 
e Contact Haese Mathematics: info@haesemathematics.com 

SELF TUTOR 

Simply ‘click’ on the (or anywhere in the example box) to access the worked 

example, with a teacher’s voice explaining each step necessary to reach the answer. 

Play any line as often as you like. See how the basic processes come alive using 
movement and colour on the screen. 

  

Example 3 o) Self Tutor 

Solve for z on the domain 0 < z < 27 

a cosz:—@ b 2sinz—1=0 

a coszzffizé b 2sinz—1=0 ¢ tanz+v3=0 

i tanz = 7\/?_) 

2m 
3 

5T 
3 

  
  

See Chapter 9, Trigonometric equations and identities, p. 228



  

INTERACTIVE LINKS 
Interactive links to in-browser tools which complement the text are included to 

assist teaching and learning. 

Icons like this will direct you to: 

ICON 

interactive demonstrations to illustrate and animate concepts 

games and other tools for practising your skills 

graphing and statistics packages which are fast, powerful alternatives to using a graphics calculator 

printable pages to save class time. 

Save time, and 
= make learning easier! 

Angle relationships ‘O 

  

The 2-coordinate of P, is the same as the y-coordinate of Py. The y-coordinate 

of P, is the is the same as the z-coordinate of P,. These relationships are the 

complementary angle formulae. 

prev next 

  

Ly 
—     

  

    
sin(§ — 6) = cos6 Normal probabilty distribution © 
cos(j —0) =sinf v 

1 
Py(cosb,sin ) 08 

0.6 

0.4 

0.2 

# / 6 5 4 3 2 1 1 2 3 4 5 64 

See Chapter 9, R 

Trigonometric equations and identities, p. 234 v 

5 A 4 0 1 2 3 

o 0.75 

05 075 1 125 15 175 2       
See Chapter 21, The normal distribution, p. 509 

Graphics calculator instruction booklets are available for the Casio fx-CG50, TI-84 Plus CE, 

TI-nspire, and the HP Prime. Click on the relevant icon below. 

CASIO 
#x-CG50 T1-84 Plus CE Tl-nspire HP Prime 

When additional calculator help may be needed, specific instructions are 

available from icons within the text. 
GRAPHICS 

CALCULATOR 
INSTRUCTIONS 
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SYMBOLS AND NOTATION USED IN THIS COURSE 

{z1, T2, ... 

v 2 
v 

o
l
 

IN
 2 

A 
A
W
 

V 
IN
 

the set of positive integers and zero, 

{0,1,2,3,...} 
  

        

he set of irrational numbers 

1l 

1l 

the set of rational numbers 

1l 

the set of real numbers 

tl he set with elements z1, zo, .... 

the number of elements in set A 

the set of all = such that 

is an element of 

is not an element of 

the empty (null) set   the universal set 

union 

intersection 

is a proper subset of 

is a subset of 

the complement of the set A 

a to the power of l, nth root of a 
n 

(if a>0 then /a>0) 

a to the power %, square root of a 

(if a>0 then a>0) 

the modulus or absolute value of x 

|$|:{ rforr >0 =xzeR 

—zforr <0 zeR 

identity or is equivalent to 

is approximately equal to 

is greater than 

is greater than or equal to 

is less than 

is less than or equal to 

is not greater than 

is not less than 

the nth term of a sequence or series 

e set of integers, {0, 1, £2, £3, .... 

he set of positive integers, {1, 2, 3, ...} 

log, = 

Inz 

sin, cos, tan 

sin™!, 

cos™ !, tan™! 

t he common difference of an 

arithmetic sequence 

t he common ratio of a geometric 

sequence 

t he sum of the first n terms of a 

  

      

sequence, uy + uz + ... + Uy, 

the sum to infinity of a sequence, 

Uy T+ U2 

Uy + Uz + o Uy 

T 

t 

t 

t 

t 
= 

= 

t 

t 

t 

t 

t 

r=0,1,2, ... 

(a+0b)" 

[ is a function which maps « onto y 

1l 

respect to = 

t 

T 

X (n—1)x(n—2)x ... x3x2x1 

he r binomial coefficient, 
in the expansion of 

he image of  under the function f 

e inverse function of the function f 

he composite function of f and g 

he limit of f(z) as  tends to a 

e derivative of y with respect to 

e derivative of f(x) with respect 
o 

he second derivative of y with 

he second derivative of f(z) with 
espect to = 

he indefinite integral of y with 

respect to = 

e definite integral of y with respect 

o « between the limits  =a and 

r=>b 

exponential function of x 

he logarithm in base a of 

he natural logarithm of x, log, 

he circular functions   he inverse circular functions



  

AB 

(AB) 

CAB 
AABC 

P(4) 
P(4’) 

P(A| B) 
T1, T2y e 

1, fas o 

the point A in the plane with 

Cartesian coordinates = and y 

the line segment with end points 

A and B 

the length of [AB] 

the line containing points A and B 

the angle at A 

the angle between [CA] and [AB] 

the triangle whose vertices are 

A, B,and C 

is parallel to 

is perpendicular to 

probability of event A 

probability of the event ‘not A’ 

probability of the event A given B 

observations of a variable 

frequencies with which the 

observations i, T3, T3, ..... occur 

probabilities with which the 

observations 1, xa, T3, ..... oceur 

the probability distribution function 

of the discrete random variable X 

the probability mass function of a 

discrete random variable X 

the expected value of the random 

variable X' 

population mean 

population standard deviation 

population variance 

sample mean 

sample variance 

standard deviation of the sample 

binomial distribution with parameters 

n and p 

normal distribution with mean p and 

variance o> 
is distributed as 

T—p 
o 

standardised normal z-score, z =   

Pearson’s product-moment 

correlation coefficient
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THEORY OF KNOWLEDGE 
Theory of Knowledge is a Core requirement in the International Baccalaureate Diploma Programme. 

Students are encouraged to think critically and challenge the assumptions of knowledge. Students 

should be able to analyse different ways of knowing and areas of knowledge, while considering different 

cultural and emotional perceptions, fostering an international understanding. 

The activities and discussion topics in the below table aim to help students discover and express their 
views on knowledge issues. 

Chapter 3: Functions 

Chapter 6: Logarithms 
p- 156 

Chapter 7: The unit circle and radian measure 
p. 180 

Chapter 10: Reasoning and proof 
p- 256 

Chapter 10: Reasoning and proof 
p. 258 

Chapter 11: Introduction to differential calculus il 
p- 

Chapter 14: Applications of differentiation 
p. 359 

Chapter 19: Bivariate statistics 
p. 469 

Chapter 19: Bivariate statistics 
p. 474 

THEORY OF KNOWLEDGE 

Snell’s law states the relationship between the angles of incidence 

and refraction when a ray of light passes from one medium to 

another with different optical density. It was first discovered in 

984 AD by the Persian scientist Ibn Sahl, who was studying 

the shape of lenses. However, it is named after Willebrord 

Snellius, who rediscovered it during the Renaissance. The law 

was published by René Descartes in his Discourse on the Method 

published in 1637. 

  

Willebrord Snellius 

  

In the figure alongside, a ray passes from A to B via point R. 

We suppose the refractive indices of the two media are n and 

m, the angle of incidence is «, and the angle of refraction is 3. 

Snell’s law states that: msina = msin 3. 

The law follows from Fermat’s principle of least time, which 

says that a ray of light travelling between two points will take 

the path of least time. 

1 Is optimisation a mathematical principle? 

2 [Is mathematics an intrinsic or natural part of other 

subjects?   See Chapter 14, Applications of differentiation, p. 359



GEOMETRIC FACTS 

TRIANGLE FACTS 

e The sum of the interior angles of a triangle is 180°. ACKAGE 

e In any isosceles triangle: 

> the base angles are equal 

» the line joining the apex to the midpoint of the base bisects 

the vertical angle and meets the base at right angles. 

QUADRILATERAL FACTS 

e The sum of the interior angles of a quadrilateral is 360°. 

e A parallelogram is a quadrilateral which has opposite sides parallel. 

ies: GEOMETRY Propertlesj ' ) SEOMETR! 

» opposite sides are equal in length 

> opposite angles are equal in size 
> diagonals bisect each other. % 

e A rectangle is a parallelogram with four equal angles of 90°. 

PropertieSf . GEOMETRY 

> opposite sides are parallel and equal 

» diagonals bisect each other 

> diagonals are equal in length. 

e A rhombus is a parallelogram in which all sides are equal in length. 

Properties: EomETRY 

» opposite sides are parallel 

> opposite angles are equal in size 

» diagonals bisect each other at right angles 

> diagonals bisect the angles at each vertex. 

Bl
 
% 

e A square is a rhombus with four equal angles of 90°. 

Properties: GEOMETRY 

» opposite sides are parallel 

T » diagonals bisect each other at right angles 

» diagonals bisect the angles at each vertex 

> diagonals are equal in length. 

e A trapezium is a quadrilateral which 

has a pair of parallel opposite sides. 

%   

e A Kkite is a quadrilateral which has two pairs of adjacent sides equal in length. 

Properties: 

> one diagonal is a line of symmetry 

» one pair of opposite angles are equal 

» diagonals cut each other at right angles 

» one diagonal bisects one pair of angles at the vertices 

> one of the diagonals bisects the other. 
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CIRCLE FACTS 

Name of theorem Statement 

Angle in a semi-circle The angle in a 

semi-circle is a right 

angle. 

ABC = 90° 
GEOMETRY 
PACKAGE 

% 
  

Chords of a circle 

Radius-tangent 

The perpendicular from 

the centre of a circle to a 

chord bisects the chord. 

The tangent to a circle 

is perpendicular to the 

radius at the point of 
contact. 

GEOMETRY 
PACKAGE 

OAT = 90° 
GEOMETRY 

- 
  

Tangents from an 

external point 

Angle at the centre 

Angles subtended 

by the same arc 

Angle between a 

tangent and a chord 

Tangents from an 

external point are 

equal in length. 

The angle at the centre of 

a circle is twice the angle 

on the circle subtended 

by the same arc. 

Angles subtended by an 

arc on the circle are equal 

in size. 

The angle between a 

tangent and a chord at the 

point of contact is equal 

to the angle subtended by 

the chord in the alternate 

segment.   
GEOMETRY 

GEOMETRY 
PACKAGE 

ADB = ACB 
GEOMETRY 
PACKAGE 

BAS = ACB 

GEOMETRY  



USEFUL FORMULAE 

PERIMETER FORMULAE 

  

      

13 

f 
d &1 & 

  

  

  

  

  

w 

l l 

square rectangle triangle circle arc 

P =4 P=2(1+w) P=a+b+c C =2nr l:(L)zfl-r 
360 

or C=mnd 

AREA FORMULAE 

Shape Diagram Formula 

Rectangle |:|Width A = length X width 

length 

Triangle hdghh A =1 X base X height 

Parallelogram A = base X height 

Trapezium 

or 

Trapezoid 

Circle 

Sector     
SURFACE AREA FORMULAE 

RECTANGULAR PRISM 

_— 

  
c A = 2(ab + bc + ac) 

b
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CYLINDER CONE 

O e are 
Hollow cylinder A =27nrh Open cone A =T7rs 

hollow (no ends) (no base) 

= 
h 

v 

"7 hollow 

  

  

Open cylinder | A = 27rh + 7r? 
hollow (one end) Solid cone | A = 7rs + wr? 

g A (solid) 

h L 
T solid 
  

  

Solid cylinder | A = 2wrh + 272 

(two ends) 

  

    
  

Object 
  

Solids of 

uniform V = area of end X length 

cross-section 
. end 

< height —» 

Pyramids 

and cones 
V = %(area of base X height)      



  

The binomial 

theorem 

Contents: A Factorial notation 

B Binomial expansions 

€ The binomial theorem 

 



16  THE BINOMIAL THEOREM (Chapter 1) 

  OPENING PROBLEM 

The cube alongside has sides of length (a +b) cm. Its 

volume is (a + b)3 cm®. 

The cube has been subdivided into smaller blocks by bem 

making 3 cuts parallel to the cube’s surfaces as shown. 

Things to think about: acm 

a How many blocks have been created? 

b How many blocks are: 
| abyabya ANIMATION Y =l acm 

ii abyabyb 

ilil abybbyb 

iv bbybbyb? 

¢ By adding the volumes of the blocks, can you write an expression which is equivalent to 

(a+b)3? 

The sum a + b is called a binomial as it contains two terms. 

Any expression of the form (a 4 b)™ is called a power of a binomial. 

In this Chapter we derive a concise formula for the binomial expansion of (a + b)™. However, before 

we can achieve this, we need some notation associated with combinations. 

TATION 
i 

For n > 1, n!is the product of the first n positive integers. 

nl=nn—-1)M-2)...3x2x1 

n! is read “n factorial”. 

For example, 5 x4 x3x2x1=5! 

An alternative definition of factorial numbers is that nl=nx(n—-1) for n>1 

For example, 6! =6 x 5! 

Under this rule we notice that 1! =1 x 0! 

We therefore define ol=1 

o Is the definition 0! =1 “arbitrary”? 

e s it logical to extend the definition of factorials to include 0!, even though it is not meaningful 

in the context of the original definition “product of the first n positive integers”? Can you think 

of other areas of mathematics in which a definition is similarly expanded?
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Example 1 

Express in factorial form: 

a 9x8xT7 

A 9><8><7_9><8><7><6><5 

LR R T 

11 x10x9x8 

4x3x2x1 

x4x3x2x1 9 
  

6x5x4x 

11x10x9x8 11x10x9 

3x2x1 6! 

X8XTX6Xx5x4x3x2x1 11 
  

4x3x2x1 

EXERCISE 1A 

  

4X3X2XIXTx6x5x4x3x2x1 

  

  

417! 

    

  

1 Evaluate: 

a 2! b 3! c 4! d 5! e 6! f 10! 

2 Express in factorial form: 

a 4x3x2x1 b Tx6x5hx4x3x2x1 ¢ 6x5H 

d 8x7x6 e 10x9x8x7 f 15x14x13x 12 

Ix8xT 13 x 12 x 11 x 10 i 15 x 14 x 13 x 12 x 11 

3x2x1 4x3x2x1 5x4x3x2x1 

3 Simplify without using a calculator: 

7! 8! 12! 120! 10! 100! 
a — b — — —_— e 

6! 6! 10! 119! 8! x 2! 98! x 2! 

4 Simplify: 

| n! b (n+2)! ¢ (n+1)! 

(n—1)! n! (n—1)! 

[NEUNTT GINOMIAL EXPANSIONS 
We have often used the perfect square expansion: 

We can use this rule to expand (a + b)? 

(a+b)®=(a+b)(a+D)? 
= (a+b)(a® + 2ab 

=a® +2a%b + ab® 

+ b+ 2ab? 

= a® + 3ab + 3ab? 

The binomial expansion of (a 

The binomial expansion of (a 

In the following Investigation we will discover a 

of n. 

(a+b)% = a? + 2ab + b*. 

as follows: 

+b%)  {perfect square expansion} 

43 

4+   {collecting like terms} 

- b)? s 

- b)% s 

a? + 2ab+ b2 

a® + 3a?b+ 3ab® + b2,   

method to expand (a+b)" for higher integer values
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INVESTIGATION 1 

What to do: 

1 Expand (a+b)* using (a-+b)* = (a+b)(a+b)>. 

2 Hence expand (a+b)° using (a+b)(a+ b)*. 

3 The cubic expansion (a+ b)® = a® + 3a?b+ 3ab® +b* contains 4 terms. They are written in 
order so that the powers of a decrease. We observe that their coefficients are: 1 3 3 1 

a With the terms written in this order, what happens to the powers of b? 

b Does the pattern in a continue for the expansions of (a + b)* and (a -+ b)°? 

¢ Use your results to continue this n=1 1 1 

pattern of coefficients up to the n=2 1 2 1 

case n = 5. n=23 1 3 3 1<—row3 

4 The triangle of numbers we are considering is called Pascal’s triangle. 

a How can each row of Pascal’s triangle be predicted from the previous one? 

b Predict the elements of the 6th row of Pascal’s triangle. 

¢ Hence write down the binomial expansion of (a + b)S. 

d Check your result algebraically by using (a + b)® = (a + b)(a + b)° and your results 

from 2. 

You should have observed that in Pascal’s 1 1 row 1 
triangle, the values on the end of each row are 

- . 1 2 1 row 2 
always 1. Each of the remaining values is found 

by adding the two values diagonally above it. 13 3 1 row 3 

1 4 6. 4 1 row 4 
NN NSNS 

1 5 10 10 5 1 row 5 

You should have also found that (a + b)* = a* + 4a®b + 6a%b* + 4ab® + b* 
= a*b® + 4a®b + 6020 + 4a*b® + a'b* 

Notice in this expansion that: 

e As we look from left to right across the expansion, the powers of a decrease by 1, while the powers 

of b increase by 1. 

o The sum of the powers of a and b in each term of the expansion is 4. 

e The number of terms in the expansion is 441 = 5. 

e The coefficients of the terms are row 4 of Pascal’s triangle. 

For the expansion of (a+b)" where n € N: 

As we look from left to right across the expansion, the powers of a decrease by 1, while the 

powers of b increase by 1. 

The sum of the powers of a and b in each term of the expansion is n. 

The number of terms in the expansion is n + 1. 

The coefficients of the terms are row n of Pascal’s triangle.



THE BINOMIAL THEOREM  (Chapter 1) 19 
  

In the following Examples we see how the general binomial expansion (a + b)™ may be put to use. 

Example 2 LR R TS 

  

Use (a+b)® =a®+ 3a%b+ 3ab® + b3 to find the binomial expansion of: 

a (2z+3)3 b (z-5)3 
  

a In the expansion of (a+b)® we substitute a = (2z) 

i 1= 
o (224 3)° = (22)® + 3(22)*(3) + 3(22)' (3)* + (3)? 

= 823 + 3622 + 54z + 27 : 

b We substitute @ = () and b= (—5) é 

o (@—=5)* = ()* + 3(2)*(=5) + 3(z)(-5)* + (-5)° > 
=z — 1522 + 752 — 125 

  

  

  

  

Example 3 o) Self Tutor         

    

Find the: 
5 

a b5th row of Pascal’s triangle b binomial expansion of (m = Z) .        

a 1 1<——— the Ist row, for (a+b)* 

1 21 

1 3 3 1 

1 4 6 41 

1 5 10 10 5 1<—— the 5th row, for (a+b)® 

  

  b Using the coefficients obtained in a, (a + b)® = a® + 5a*b + 10a®b? + 10a%b® + 5ab* + b° 

Letting a = (z) and b= (_—2), 

-y 
(@)° 4 5(1)4(;2) ; 10(z)3(_2)2 : 10(36)2(_2)3 * 5(“”)(_2)4 ’ (_2)5 
  
  

T 

=25 102 + 400 - 2 8 _ 32 
x oz xd     

EXERCISE 1B 

1 Use the binomial expansion of (a+ b)* to expand and simplify: 

a (p+q)? b (z+1)3 ¢ (z-3)° 

d (2+2)* e (3z—1)° f (2z+5)3 

3 (2a—b)° h (3z - %)3 i (293 + %)3 

i (VE-1)? ko (2?+2)° ! (Z“Lf
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2 Use (a+b)* =a*+4a’b+ 6a®b? + 4ab® + b? to expand and simplify: 

a (1+a)* b (p—q)* ¢ (z—2)* 

d (3—2) e (1+22)* f (22— 3)* 

g (2z+b)* h (z + %)4 i <2z - i>4 

3 a Expand and simplify: 

i (a—0b) i (a—0b)* 

b Compare the expansions in a with those of (a+b)® and (a + b)*. Discuss the signs of the 

corresponding terms. 

L a Write down the 5th row of Pascal’s triangle. 

b Hence copy and complete: (a+b)°=... 

¢ Find the binomial expansion of: 

i (z+2)° i (1-x)° i (1+2z)° 
5 

v (z—2)° v (22 +1)° vi (m - i) 

5 a Write down the 6th row of Pascal’s triangle. 

b Hence copy and complete:  (a+ ) = ...... 

¢ Find the binomial expansion of: 
6 

i (@+2)° i (22— 1) i (ac ¥ %) 
6 Expand and simplify: 

a (1+v2)° b (V5+2)" ¢ (2-v2)° 

7 a Expand (2+x)°. b Hence find the value of (2.01)°. 

8 Expand and simplify: 

a (2z+3)(z+1)* b (z—1)(2z+1)3 

9 Find the coefficient of: 

a a®® in the expansion of (3a + b)® b a®® in the expansion of (2a + 3b)°. 

ACTIVITY   

Suppose “shallow diagonals” are drawn on Pascal’s triangle as shown below: 

\4\1\\\\ 

10 10 

15 20 15 6 

What to do: 

1 Find the sum of the numbers in each diagonal. 

   
2 Do you recognise the sequence of numbers formed by your answers to 1? Can you explain why 

this occurs?
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LI THE BINOMIAL THEOREM 
For higher powers of a binomial, generating rows of Pascal’s triangle by hand is very tedious. To 

efficiently expand (a + b)™, we need a general formula for each term of the expansion. 

INVESTIGATION 2 

PART 1: COUNTING 

The mathematical principle of counting is not formally a part of this course. However, it is necessary 

to understand how the binomial expansion (a + b)™ is developed. 

Suppose there are 10 members in a debating club. 4 members are to be randomly chosen to represent 

the club in a competition. 

What to do: 

1 Suppose the members of the club are listed. There are 10 options for who can 
: . . Enrique 

be listed first, and 9 options for who can be listed second. Amélie 

a How many options are there for who can be listed: Francesca 

i third ii fourth iii fifth? Kristian 

Betina b Explain why the total number of orders in which the members can be 

listedis 10 x 9 x 8 x ... x 3 x 2 x 1 =10! 

2 Now suppose the top four members on the list are the ones chosen to represent the club. 

a Explain why the total number of ways in which the first four members can be listed is 

10x9x8xT. 

10! 
b Write 10 X 9 x 8 x 7 in the form =T 

In how many ways could the 6 people not in the team be ordered? 

d Complete the sentence: ~ Since the order of the 6 people left out of the team is not important, 

we divided the total number of orders in which the members can be listed by ...... 

3 State the number of ways in which the 4 members who are in the team can be ordered. 

4 Hence explain why the total number of ways in which the team of 4 can be chosen from 

10! 
10 members is . 

4! x 6! 
  

5 Now suppose there are n members in the club and  members are chosen for the team. In how 

many ways could the team be chosen? 

PART 2: THE BINOMIAL COEFFICIENT 

Consider the expansion of (a+ b)" = (a+ b)(a +b)(a +b)....(a + b). 

What to do: 

1 Suppose you expanded the brackets completely without simplifying “like” terms. How many 

terms would there be?
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2 Each of these terms is generated by selecting one term, either @ or b, from each of the n sets of 

brackets. 

a If you choose b r times, how many times do you choose a? 

b In how many ways can you choose  lots of b from the n sets of brackets? 

¢ When you collect the “like” terms, how many terms of the form ™~ 70" will there be? 

This value is called the binomial coefficient. 

From the Investigation, you should have found that: 

e If there are n distinct objects and we choose r of them at a time, the 

  

  

! 

total number of possible combinations is v - 
(n—r)!x7! "C, isread as 

‘We abbreviate this formula as "C,. or ('T’) “n choose 7. 

! 
e The value (") — ™ s called the binomial coefficient 

4 (n—r)! xr! ‘ 

because (!') s the coefficient of a"~"b" in the expansion of k=< 

(a +b)™. & 
For a given value of n, we can calculate (f) for r=0,1,2,..,n. G 

We can evaluate (7) using the formula [l ) 
5C2 n n! . 

= ———, or our graphics calculator. (™M T 17 O our graphics calculato 1 ) 

GRAPHICS 

For example, CALCULATOR 
51 ExAx3x2x1 INSTRUCTIONS 

5y 2 _2XTXORER . 3 G =m0 EERAMRED (5] 

To find all the values of (';) for a particular Fembeeal 

value of n, you can use a list on your R 
) 

  

            

  

calculator. &11 -fl 
GRAPHICS 

— ny _ 2 s CALCULATOR For example, for n =4 we see (0) =1, 5 A | CALCULATOR 
ny __ ny __ ny _ ny _ (1)=4, (5)=6, (3) =4 and () =1 IEEE D) 

  INVESTIGATION 3 

What to do: 

1 Evaluate this triangle of numbers: 

(o) 
@ @) 

0 @ 6 
@ G G @) 

G G 6 G @) _ 
@ O 6 O O 6 

2 Copy and complete: The rth number in the nth row of Pascal’s triangle is ...... 

Use your calculator to list 

( 1 ) the binomial coefficients 
(2) for each whole row. 

NG 
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From the Investigation, you should have observed that the rth number of the nth row of Pascal’s triangle 

is (’,‘) where n, r € N, r < n. This confirms that the coefficients in the expansion of (a +b)" are 

the values (’TL) for r=0,1,2, ..., n. 

The binomial theorem states that 

(a+b)" =a™ + (q)a"_lb 4 veee + (:)a"_TbT 4+ oo + B 

- £ ey 
where () is the binomial coefficient of a"~"b" and 7 =0,1,2,3, .., n. 

The binomial theorem allows us to perform a binomial expansion or find a particular term in a binomial 

expansion, without having to draw Pascal’s triangle each time. 

The general term or (r 4 1)th term in the binomial expansion (a + b)™ is 

TT+1 = (:)an—rbr_ 

  

12 
Write down the first three and last two terms of the expansion of (21 + l) . 

x     Do not simplify your answer. 
  

  

O AR (118 

  

14 
Find the 7th term of (396 — %) . Do not simplify your answer. 

x 

=3x), b=(=2), and n=14 a = (3z), (;), and n = 

Given the general term  7T,.; = (f)a"”b’", welet 7 =6 

Ty = (164)(33”)8 (;_;1)6   
  

EXERCISE 1C 

1 Write down the first three and last two terms of the following binomial expansions. Do not simplify 

your answers. 

a (1+22)1 b (31—&-%)15 c <2z—§)20 
x
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2 Without simplifying, write down: 

a the 6th term of (2z + 5)1° 

)17 

Z (:L) (71)ran—rbr. 

=0 

2 r—2 
T 

¢ the 10th term of ( 

3 Show that (a —b)" 

b the 4th term of (2% + y)9 

1 
2 — = 

x 
)21. d the 9th term of (2 

Example 6 l1>)) Self Tutor 

12 
In the expansion of (a?2 3G é) , find: 

x 

a the coefficient of x% b the constant term. 
  

alf 24—-3r=6 

then 3r =18 

r==6 

7, = (12)a8 
the coefficient of 2% is 

('9)45 or 3784704,   

a=(z?), b= (é), and n =12 
x 

- 
the general term 7,41 = (lf)(af)m” (é) 

x 

12\, 2a-2r 4" 
= ()27 x — 
_ (1T2)4Tx24—3r 

b If 24-3r=0 

then 3r =24 

. r=28 

7, = (12) %20 
the constant term is 

('7)4® or 32440320.     

Consider the expansion of (z +2)8. 

a Write down the general term of the expansion. 

b Find the coefficient of 2°. 

Consider the expansion of (z +b)”. 

a Write down the general term of the expansion. 

b Find b given that the coefficient of z* is —280. 

Find the constant term in the expansion of: 

2 15 

Find the coefficient of: 

a 10 2)10 z'% in the expansion of (3 + 2z 

¢ 2% in the expansion of (2z* — 3y)6 

b 2% in the expansion of <2x2 - 

12 d '? in the expansion of <2x2 - 

3 

T 

1 

x 

; 

)12.
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8 Consider the expression (z%y — 2y2)6. 
power. 

Find the term in which x and y are raised to the same 

9 The third term of (1+ )" is 3622. Find n, and hence find the fourth term. 

10 
10 Find a if the coefficient of z'! in the expansion of (12 + i) is 15. 

axr 

en Y «) Self Tutor 

  

Find the coefficient of z® in the expansion of (z + 3)(2z — 1)°. 
  

(z +3)(2z — 1)° 

= (@ +3)[(22)° + (8) 22)°(=1) + (§) (22)*(=1)? + ...] 

(2 +3)(2% — (6)2°0° + (8)24t — ...) 
4 

H——ot— @ 

So, the terms containing z° are (3)2%5 from (1) 

and —3(%)2°2° from (2) 

      
    

the coefficient of z° is (§)2* —3(%)2° = —336     
11 Find: 

a the coefficient of x* in the expansion of (z + 4)(x — 3)¢ 

  b the coefficient of #° in the expansion of (z + 2)(z% + 1)® 

¢ the term containing x° in the expansion of (2 — z)(3z + 1)°. 

12 If (1+kz)"=1-122+6022 —...., n€Z*, find the values of k and n. 

13 a Write down the first 5 rows of Pascal’s triangle. 

b Find the sum of the numbers in: 

i row1 ii row 2 iii row 3 iv row 4 v row 5. 

¢ Copy and complete: “The sum of the numbers in row n of Pascal’s triangle is ...... 

d Show that (1+z)" = (§)+ (1) e+ (5)a?+ ...+ (") a1+ (1) 2" 

e Hence deduce that: 

PO+ E) G () =27 
i (0) - +E) -G et D () =0 

f By considering the binomial expansion of (1+ )", find 3 27(7). 
=0 

      

14 a Write down the first four and last two terms of the binomial expansion (3 + z)". 

b Hence simplify 3"+ ()37~ 4+ (7)3" 2+ (3)3" %+ ... +3n+1.
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DISCUSSION 
1o (0 () 

o2 1 @ @ G 
L3 3 1 G G 6 

L4 6 4 1 0 GO G G @ 
1L 5 10 10 5 1 @ ¢ 6 G @ 6 

These alternative representations of Pascal’s triangle allow us to deduce some properties of the 

binomial coefficient (:) 

(3) 

For example: 

e The values of the coefficients at the end of each row are 1, suggesting that (g) =1 and 

(*) =1 forall neN. 
e The remaining values in each row are found by adding the two values diagonally above it, 

giving us Pascal’s Rule (*)+ (,},) = (1"F]). 

o The symmetry of Pascal’s triangle suggests that () = (," ) forall r,n€eN, r <n. 

Can you explain, in the context of combinations, why these properties are true? 

  

HISTORICAL NOTE 

The binomial theorem is one of the most important results in mathematics. 

The process of multiplying out binomial terms dates back to the 

beginning of algebra. Mathematicians had noticed relationships 

between the coefficients for many centuries, and Pascal’s triangle 

was certainly widely used long before Pascal. 

Sir Isaac Newton discovered the binomial theorem in 1665, but he did 

not publish his results until much later. Newton was the first person 

to give a formula for the binomial coefficients. He did this because 

he wanted to go further. Newton’s ground-breaking result included a 

generalisation of the binomial theorem to the case of (a+b)" where 

n is a rational number, such as % In doing this, Newton was the first 

person to confidently use the exponential notation that we recognise S [z Nas 
today for both negative and fractional powers. 

    
REVIEW SET 1A 

1 Express in factorial form: 

  

a 8x7x6x5x4x3x2x1 b 10x9x8 

2 Simplify: 

A n! b n!+ (n+1)! 
  

(n—2)! n!
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Use the binomial expansion to expand and simplify: 

a (z+3)° b (z-2)° 

Without simplifying, write down: " 

a the 5th term of (2z + 3)° b the 8th term of (3z - l) . 
x 

Expand and simplify: 

a (5+v3)° b (z+3)(x—1)* 

Use the expansion of (4 -+ x)* to find the exact value of (4.02)3. 

Use Pascal’s triangle to expand (a + b)°. 
6 

Hence find the binomial expansion of: a (z-3)° b (2 o l) 

3\12 
in the expansion of <2z — —2) . 

T 
Find the coefficient of 26 

Find the coefficient of z° in the expansion of (2z + 3)(z — 2)°. 

Find ¢ given that the expansion (1 + cz) (1 +)* includes the term 2223 

a Write down the first four and last two terms of the binomial expansion (2 + z)". 

b Hence simplify 27+ (7)2" 7!+ (5)2" 2+ (5)2" ® + ...+ 2n+ 1. 

9 
Find the possible values of a if the coefficient of x® in (2z + L) is 288. 

G/ZZ 

REVIEW SET 1B 

Simplify:  a ;’_: b 3?_; 

Express in factorial form: 

a Tx6x5x4 1x10x9 
3x2x1 

Use the binomial expansion to find: 

a (z—2y)3 b (3z+2)* 

Find the coefficient of z® in the expansion of (2z + 5)%. 

6 
Find the constant term in the expansion of (2x2 — l) . 

T 

Expand and simplify: 

a (2-v2)° b (z+3)(2z+1)3 

Write down the first three and last two terms of the following binomial expansions. Do not 

simplify your answers. 5 
1 

a (20— b (Sw T f) 
T
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10 
8 Find the coefficient of x'° in the expansion of (% - 4ac) . 

x 

9 
9 In the expansion of (3%2 + l) , find: 

x 

a the coefficient of z'2 b the constant term. 

10 The first three terms in the expansion of (1+ kz)", n € Z*, are 1—4z + %12. Find & 

and n. 

11 Find k in the expansion (m — 2n)'0 = m!® — 20m°n + km®n? — ... + 1024n'0.   

  

8 
12 Find the possible values of ¢ if the constant terms in the expansions of (z3 S5 %) and 

T 4 
(x3 + %) are equal. 

x
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  OPENING PROBLEM 

Energy-conscious Misha wants to use solar energy to heat his cup of coffee. He has decided to build 

a reflecting surface to focus the sun’s light on the cup. 

He understands that the sun’s rays will arrive parallel, and 

that each ray will bounce off the surface according to the 

law of reflection: 

angle of incidence = angle of reflection 

Things to think about: 

a What shape should the surface have?     . . flecti 
b Can we write a formula which defines the shape of reflection 

the surface? 

In this Chapter we will study quadratic functions and investigate their graphs which are called parabolas. 

There are many examples of parabolas in everyday life, including water fountains, bridges, and radio 

telescopes. 

   
We will see how the curve Misha needs in the Opening Problem is actually a parabola, and how the 

Opening Problem relates to the geometric definition of a parabola. 

    

  ACTIVITY 1 

A cone is right-circular if its apex is directly above the centre of the &G s 

base. 

Suppose we have two right-circular cones, and we place one upside-down 

on the first. Now suppose the cones are infinitely tall. 

We call the resulting shape a double inverted right-circular cone. 

When a double inverted right-circular cone is cut by a plane, 7 possible 

intersections may result, called conic sections: 

e a point e aline e a line-pair e acircle 

e an ellipse e a parabola e a hyperbola 

Click on the icon to explore the conic sections. L2 

You should observe how the parabola results when cutting the cone parallel to its slant 

edge.
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PRI GUADRATIC FUNCTIONS 
A quadratic function is a relationship between two variables = and y which can 

be written in the form y = az? + bz + ¢ where a, b, ¢ are constants, a #0. 

FINDING y GIVEN z 
For any value of z, the corresponding value of y can be found by substitution. 

  

  

€T T «) Self Tutor 

If y=—22>+3x+1 find the value of y when: 

a z=0 b z=2 ¢ z=-3. 

a When =0, b When z =2, ¢ When z = -3, 

y=—2(0)%+3(0)+1 y=-2(2)%+3(2)+1 y=—-2(-3)2+3(-3)+1 
=04+0+1 =-8+6+1 =-18-9+1 
=1 =-1 =—-26   
  

SUBSTITUTING POINTS 

We can test whether an ordered pair (z, y) satisfies a quadratic function by substituting the z-coordinate 

into the function, and seeing whether the result matches the y-coordinate. 

Example 2 o) Self Tutor 

Determine whether the given point satisfies the quadratic function: 

a y=322+22 (2, 16) b y=—-22-22+1 (-3, 1) 

  

a When z =2, b When z = -3, 

y=3(2)"+2(2) y=—(-3)?-2(-3) +1 
=12+4 =-9+6+1 

=16 =-2 

(2, 16) satisfies the function . (=3, 1) does not satisfy the function 

= 322 4 2z. y=—a—2x+1. 

  

FINDING z GIVEN y 

When we substitute a value for y into a quadratic function, we are left with a quadratic equation. Solving 

the quadratic equation gives us the values of = corresponding to that y-value. There may be 0, 1, or 2 

solutions.
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If y=a1%—2x+3, find the value(s) of  when: 

a y=2 b y=18 

a If y=2 then b If y =18 then 

2> —224+3=2 2> —22+3=18 
. 2?—2+1=0 o2 —22—-15=0 

s (z—-1)%2=0 o (z=5)(z+3)=0 
L z=1 . x=-3o0rd 

EXERCISE 2A 

1 Which of the following are quadratic functions? 

a y=2r>—4r+10 b y=8r+3 

¢ y=—227 d y=3x4+6—2? 

e 2y+ax—-3=0 fy—222=32-1 

2 For each of the following functions, find the value of y for the given value of z: 

a y=2>+3x—7 when 2 =1 

y=—222+52+2 when = -2 b 

¢ y=322—-2r—5 when z=3 

d   y=-322+7x—2 when 2= -1 

3 Copy and complete each table of values: 

a y=22-3z+1 b y=22+2z-5 

F o] F2 o[> 
Y Y 
    

¢ y=222-x+3 d y=-322+22+4 

2o [ F 2023 
Y Y               

4 Determine whether the given point satisfies the quadratic function: 

  

a y=222+5 (0, 4) b y=22-3x+2 (2,0) 

¢ y=—-a2+22-5 (-1, -8) d y=-222-2+6 (3, —15) 

e y=3z2—4z+10 (2, 10) fy=—322+4d0—-1 (2,5) 

5 For each of the following quadratic functions, find the value(s) of = for the given value of y: 

a y=22+3x+6 when y=4 b y=22—4x+7 when y=3 

¢ y=22—6x+1 when y=—4 d y=222+52+1 when y=4 

e y=32?+ 3z -2 when y=1 f y=—212>+2r—1 when y=2
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I FGRAPHS OF GUADRATIC FUNCTIONS 
2   

The simplest quadratic function is y = 

be drawn from a table of values. 

. Its graph can 
  

  

  

  

  

  

  

  

  

  

  

  

  

                          

    
The graph of a quadratic function is called a parabola. 

    

     

The point where the graph “turns” is called the vertex. 

\ If the graph opens upwards, the vertex is the minimum patabola 

or minimum turning point, and the graph is concave 

upwards. 

/a
xi
s 

of
 
sy
mm
et
ry
 

If the graph opens downwards, the vertex is the maximum > 

or maximum turning point, and the graph is concave z-intercept 

downwards. 

      

   

   

T \ 

z-intercept 
. 

y-intercept 

The vertical line that passes through the vertex is called the 

axis of symmetry. Every parabola is symmetrical about its 
minimum -—7: 

axis of symmetry. vertex 

The value of y where the graph crosses the y-axis is the y-intercept. 

The values of = (if they exist) where the graph crosses the z-axis are called the x-intercepts. They 

correspond to the roots of the quadratic equation az? + bx + ¢ = 0. 

INVESTIGATION 1 

In this Investigation we consider the properties of the graph of a quadratic stated in factored form. 

It is best done using a graphing package or graphics calculator. 

  

GRAPHING 
What to do: PACKAGE 

1 a Use technology to help you to sketch: 

y=@-D@=-3), y=20-1)-3), y=-(z-1)(-3), 
y=-3x—1)(x—3), and y=-3(—1)(z—3) 

b Find the z-intercepts for each function in a. 

  
      

¢ What is the geometrical significance of a in y = a(x — 1)(x — 3)?
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2 a Use technology to help you to sketch: 

y=2(z—1)(z —4), y=2(z—3)(z —5), y=2(z+1)(z —2), 

y=2z(z +5), and y=2(z+2)(z+4) 

b Find the z-intercepts for each function in a. 

    

¢ What is the geometrical significance of p and g in  y = 2(z — p)(z — ¢)? 

3 a Use technology to help you to sketch: 

y=2@x—-12  y=2x-3)2% y=2x+2)>2 ad y=2z% 

b Find the z-intercepts for each function in a. 

¢ What is the geometrical significance of p in y = 2(z — p)2? 

4 Copy and complete: 

e If a quadratic has the foom y =a(z —p)(x —q) then it ...... the z-axis at ...... 

e If a quadratic has the form y = a(x —p)? thenit ...... the z-axis at ...... 

  
INVESTIGATION 2 

In this Investigation we consider the properties of the graph of a quadratic stated in completed square 

form. It is best done using a graphing package or graphics calculator. 

What to do: ACKAGE 

1 a Use technology to help you to sketch: 

y=(x—-3)%+2, y=2x-32%+2, y=-2=x-3)2+2, 

y=—(z—-3)2+2, and y=-1(z—-3)2+2 

b Find the coordinates of the vertex for each function in a. 

        

¢ What is the geometrical significance of a in y = a(x — 3)2 + 2? 

2 a Use technology to help you to sketch: 

y=2x-1243, y=2@-22%+4, y=2-32+1, 
y=2(x+1)2+4, y=2x+22%*-5  and y=2(z+3)2-2 

b Find the coordinates of the vertex for each function in a. 

        

  

¢ What is the geometrical significance of  and k in y = 2(z — h)? + k? 

3 Copy and complete: 

If a quadratic has the form y = a(z — h)? +k then its vertex has coordinates ...... 

  

Quadratic form, a # 0 

y=a(z —p)(z—q) . z-intercepts are p and ¢ 

where p, g €R i 
e axis of symmetry is = = 

vertex has x-coordinate  
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Quadratic form, a #0 Facts 
  

y=a(z—h)? touches z-axis at b 
where h € R axis of symmetry is = =h 

' vertex is (h, 0) 

y=a(z—h)?+k axis of symmetry is x = h 
where h, k€ R vertex is (h, k) 

  

  
You should have found that a, the coefficient of 2%, controls the width of the graph and whether it opens 

upwards or downwards. 

For a quadratic function y = az? +bx +c, a#0: 

e a >0 produces the shape \/ called concave up. 

a < 0 produces the shape [\ called concave down. 

o If —1<a<1, a#0 the graph is wider than y = 2°. 

If a<—1 or a>1 the graph is narrower than y = % 

  

  

Sketch the graph using axes intercepts, and state the equation of the axis of symmetry: 

  

a y=2(z+3)(z-1) b y=-2(z-1)(z—-2) ¢ y=1ia+2)? 

a y=2(z+3)(z—-1) b y=-2(z-1)(z—2) ¢ y=1(z+2)? 
has z-intercepts —3, 1 has z-intercepts 1, 2 touches x-axis at —2 

When z =0, When z =0, When z =0, 

y=203)(=1) y=—2(-1)(-2) y=1(2)2 
=_6 =4 s 

y-intercept is —6 .. y-intercept is —4 
y-intercept is 2 

y=2(z+3)(z—1) 
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EXERCISE 2B.1 

1 Sketch the graph using axes intercepts, and state the 

equation of the axis of symmetry: 
      
    

The axis of symmetry 

is midway between 

  

a y=(z—4)(z+2) b y=—(z—4)(z+2) the z-intercepts. 

¢ y=2x+3)(z+5) d y=-3(z+1)(z+5) 

e y=2(z+3)? fy=—3(z+2)? 

2 Match each quadratic function with its corresponding graph. 

a y=2(x—-1)(z—4) b y=—(z+1)(z—4) cy=(@x-1)(z—-4) 

d y=(z+1)(z—-4) e y=2x+4)(z—-1) fy=-3x+4)(x-1) 

g y=2x+1)(z+4) h y=—(-1)(z—4) i y=-3@-1)(z—-4) 

A y B AY C AY 

4 

= ra\ ¢z ° 1 T T N_1 % 
—4 

v v 

D Y E AY F AY 

    

        
  

Example 5 LR R (T 

Use the vertex, axis of symmetry, and y-intercept to graph 

y=—-2(x+1)%+4. y=a(x —h)?+k 
is called completed 

The axis of symmetry is = = —1. square form. 

The vertex is (—1, 4). 

When 2 =0, y=-2(1)2+4 
=2 

a <0 so the shape is /\    
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3 Use the vertex, axis of symmetry, and y-intercept to graph: 

ay=(-17%+3 b y=2x+2)°2+1 ¢ y=-20x—-12-3 

d y=35(x-37+2 e y=—-1(z-1)2+4 fy=——(x+2)2-3 

& Match each quadratic function with its corresponding graph: 

  

a y=—(r+1)>+3 b y=-2-3)>+2 ¢ y=a’+2 
d y=—(z—172+1 e y=(r-27%-2 fy=3(+3)°-3 
g yo a2 h y=—i@—1)2+1 y=22+27-1 
A B 

  

     
SKETCHING GRAPHS BY “COMPLETING THE SQUARE" 

If we wish to graph a quadratic given in general form y = ax? +bx +c, one approach is to use 

“completing the square” to convert it to the completed square form y = a(x — h)? + k. We can then 

read off the coordinates of the vertex (h, k). 

Consider the simple case y = 22 — 6x + 7, for 

which a = 1. 

y=a’>—6x+7 

y=a®—6x+3% +7- 3 
—— —— 

Cy= (z—-3)? -2 

So, the axis of symmetry is = = 3 and the vertex 

is (3, —2). 

When =0, y =17, so the y-intercept is 7.  
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Example 6 LR AT 

Write y = 2% + 42 + 3 in the form y = (z — h)? + k by “completing the square”. 

Hence sketch y = 22 + 4z + 3, stating the coordinates of the vertex. 

y=22+4z+3 

y=a%+4z 2% +3 - 2? 

y=(x+22%-1 

So, the axis of symmetry is = —2 

and the vertex is (—2, —1). 

When =0, y=3 

the y-intercept is 3. 

  

  

Example 7 ) Self Tutor 

a Convert y =322 —4x +1 to the completed square form y = a(z — h)? + k. 

b Hence write down the coordinates of the vertex, and sketch the quadratic. 

b The vertex is (%, —3) 
and the y-intercept is 1.   

EXERCISE 2B.2 

1 Write the following quadratics in the form y = (z — h)? + k by “completing the square”. 

Hence sketch each function, stating the coordinates of the vertex. 

    

a y=a22-2v+3 b y=22+4r-2 ¢ y=2a—4x 

d y=22+3z e y=22+5r—2 f y=2>-32+2 

g y=a>—6x+5 h y=22+8r-2 i y=22-52+1 

2 For each of the following quadratics: 

i Write the quadratic in the completed square form Take out the factor a, 

y=a(r—h)?+k. then complete the square. 

il State the coordinates of the vertex. 

il Find the y-intercept. 

iv Sketch the graph of the quadratic. 

a y=22>+4x+5 b y=22>-8x+3 

¢ y=22%—-62+1 d y=322-62+5 

e y=-2>+4x+2 f y=-222-52+3 
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SKETCHING QUADRATICS IN THE GENERAL FORM y = az® + bz + ¢ 

We now consider a method of graphing quadratics of the form y = az? +bx+c directly, without having 

to first convert them to a different form. y=az®+br+c 

We know that the quadratic equation az? + bz +c = 0 

b+ VA 

2a 

  

has solutions where A = b? — 4ac.     

  

If A >0, these are the x-intercepts of the graph of the 

quadratic function y = ax? + bz +c. /4 

. —b / 
The average of the values is —, so we conclude that: “b—VA —b+va 

2a 2a 2a 

e the axis of symmetry is = = %a 
a 

. . —b 
e the vertex of the quadratic has z-coordinate —. 

2a 

To graph a quadratic of the form y = ax? + bx + c: 

e Find the axis of symmetry z = ;—b 
a 

e Substitute this value to find the y-coordinate of the vertex. 

e State the y-intercept c. 

e Find the z-intercepts by solving az? + bz +c = 0, either by factorisation or using the quadratic 

formula. 

o Graph the quadratic using the information you have found. 

Example 8 o) Self Tutor       
    

     

Consider the quadratic y = 22 + 8z — 10. 

a Find the axis of symmetry. b Find the coordinates of the vertex. 

¢ Find the axes intercepts. d Hence sketch the quadratic. 

y=2x>+8x—10 has a=2, b=38, and c= —10. Since a >0, the shape is \/ 

—b —8 a —=——=-2 b When z = -2, 

2a 2(2) —=2(—2)% +8(-2) - 10 
The axis of symmetry is o = —2. g _ " 

The vertex is (—2, —18). 

¢ The y-intercept is —10. d 

When y =0, 22°+8z—10=0 

. 222 +4z-5)=0 
2(z+5)(z—1)=0 

o x=-5orl 

the z-intercepts are —5 and 1.      
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EXERCISE 2B.3 

1 For each of the following quadratics: 

i Locate the vertex. 

ii State whether the vertex is a minimum turning 

point or a maximum turning point. 

The vertex lies on the 

axis of symmetry. 

  

  

a y=a2—4dx+2 b y=22+22-3 

¢ y=222+4 d y=-322+1 ‘ 

e y=222+8x—7 fy=—a2®>—4z-9 @ 

g y=2224+62—1 h y=22%—10z+3 k\f 

i y=—32+2-5 j y=12® Tz +6 - 

2 For each of the following quadratics: 

  

i State the axis of symmetry. i Find the coordinates of the vertex. 

iii  Find the axes intercepts. iv. Hence sketch the quadratic. 

a y=22-8x+7 b y=-22-6x-8 ¢ y=6z— 2> 

d y=-22+3x-2 e y=2z>+4x—24 f y=-322+4z-1 

g y=22%—5x+2 h y=422 -8z -5 i y=—%zz+2:v—3 

ACTIVITY 2 

Click on the icon to run a card game for quadratics. CARDICANE 

INANT 

The discriminant of the quadratic equation az? + bz +c=0 is A = b% — 4dac. 

  

We have used A to determine the number of real roots of the equation. If they exist, these roots correspond 

to zeros of the quadratic y = ax? + bx +c. A therefore tells us about the relationship between the 

graph of a quadratic function and the z-axis. 

The graphs of y =22 —22 -3, y=2>—-22+1, and y = 2> — 2z + 3 all have the same axis of 
symmetry, x = 1. 

  

  

: Ex:l 

A =b% —dac A =b% —dac 

=(-2)? —4(1)(1) =(-2)? - 4(1)(3) 
=0 8 

cuts the x-axis twice touches the z-axis does not cut the x-axis  
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For a quadratic function y = ax® + bz + ¢, we consider the discriminant A = b? — 4ac. 

e If A >0, the graph cuts the xz-axis twice. 

e If A =0, the graph touches the z-axis. 

e If A <0, the graph does not cut the z-axis. 

POSITIVE DEFINITE AND NEGATIVE DEFINITE QUADRATICS 

Positive definite quadratics are quadratics which are 

positive for all values of z. So, ax?®+bx+c >0 for \/ 

all z eR. - 

A quadratic is positive definite if and only if a« >0 and A <0. 

Negative definite quadratics are quadratics which are «——» 

negative for all values of x. So, az?+bx+c <0 for /\ 

all zeR. 

A quadratic is negative definite if and only if « <0 and A <0. 

  

  

| °ET TN 

  

  
  

Use the discriminant to determine the relationship between the graph of each function and the 

T-axis: 

a y=22+3z+4 b y=-222+5z+1 

aa=1, 0=3, c=4 b a=-2 b=5 ¢c=1 

A =b? — dac o A=0—dac 

=9—-4(1)(4) =25—4(-2)(1) 
=_7 =33 

Since A < 0, the graph does not cut the Since A > 0, the graph cuts the z-axis 

2-axis. twice. 
Since @ > 0, the graph is concave up. Since a < 0, the graph is concave down. 

The graph is positive definite. It lies The quadratic is neither positive definite 

entirely above the z-axis. nor negative definite. 

\/ @ 
+—> T 

EXERCISE 2C 

1 Use the discriminant to determine the relationship between the graph of each function and the x-axis: 

a y=22+x-2 b y=22—-4x+1 ¢ y=-a>-3 

d y=22+72-2 e y=a?+8z+16 fy=-2224+3r+1   

g y=062>+5r—4 h y=-22+2+6 i y=922+6x+1
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2 Consider the graph of y = 22% — 5z + 1. 

a Describe the shape of the graph. 

Use the discriminant to show that the graph cuts the z-axis twice. 

Find the x-intercepts, rounding your answers to 2 decimal places. 

State the y-intercept. 

® 
O 

A 
O 

Hence sketch the function. 

3 Consider the graph of y = —a2 + 4z — 7. 

a Use the discriminant to show that the graph does not cut the z-axis. 

b Is the graph positive definite or negative definite? Explain your answer. 

¢ Find the vertex and y-intercept. 

d Hence sketch the function. 

4 Show that: 

a 2z2% —4x + 7 is positive definite b —222+4 32 — 4 is negative definite 

¢ 22 —3r+6>0 forallz d 4r—2%2-6<0 forall z. 

5 Consider the graphs illustrated. y=as®+br +c 

Let y = ax® 4 bz + ¢ have discriminant A;, and Y   
y=dx? +ex+ f have discriminant A,. 
Copy and complete the following table by indicating 

whether each constant is positive, negative, or zero: 

  

y=da’+ex+ f 

13€T PR [ ) Self Tutor 

Find the value(s) of k for which the function y = 2? — 62 + k: 

a cuts the x-axis twice b touches the x-axis ¢ misses the x-axis. 

a=1, b=-6, c=k 

A =b* — dac 

= (=6) — 4(1)(k) 
=36 — 4k 

a The graph cuts the b The graph touches the ¢ The graph does not cut 

z-axis twice if A > 0. z-axis twice if A =0. the z-axis if A < 0. 

. 36—4k>0 oo 36—4k=0 oo 36—4k <0 

4k < 36 cok=9 oo 4k > 36 

k<9 S k>9       
6 For each quadratic function, find the value(s) of £ for which the function: 

i cuts the x-axis twice ii touches the x-axis iii misses the z-axis. 

a y=2>+3z+k b y=Fka? -4z +1 ¢ y=(k+1)a? —2kz+ (k—4)
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7 Explain why 322 4+ kx — 1 is never positive definite for any value of . 

8 Find the value of k such that y= %wz +(k—2)x+k*+4 is not positive definite. What 

relationship does the graph have with the z-axis in this case? 

[ EIFINBING A QUABRATIC FROM ITs GRAPH 
If we are given sufficient information on or about a graph, we can determine the quadratic in whatever 

form is required. 

Find the equation of the quadratic with graph: 

  

   
a Since the z-intercepts are —1 and 3, b The graph touches the z-axis at = = 2, 

y=a(z+1)(z — 3). so y=a(z—2)% 
The graph is concave down, so a < 0. The graph is concave up, so a > 0. 

When =0, y=3 When =0, y=38 

3 =a(1)(-3) o 8=a(-2)? 
coa=-1 Sooa=2 

The quadratic is y = —(x + 1)(x — 3). The quadratic is y = 2(z — 2).     
Example 12 ) Self Tutor     
   

    

    

  

Find the equation of the quadratic with graph: 

   
The axis of symmetry z =1 lies midway 

between the z-intercepts. 

the other z-intercept is 4. 

  

    

  

the quadratic has the form 

y=a(z+2)(x—4) where a <0 

But when =z =0, y=16 

16 = a(2)(—4) 
Sooa=-2 

The quadratic is y = —2(z + 2)(x — 4). 
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EXERCISE 2D 

1 Find the equation of the quadratic with graph: 

b y 

   

    

Example 13 ) Self Tutor 

Find the equation of the quadratic whose graph cuts the z-axis at 4 and —3, and which passes 

through the point (2, —20). Give your answer in the form y = az? + bx + c. 

Since the z-intercepts are 4 and —3, the quadratic has the form y = a(z — 4)(z + 3), a # 0. 

When z=2, y=-20 

—20=a(2—-4)(2+3) The quadratic is y = 2(z — 4)(z + 3) 

—20 = a(-2)(5) =2(2? —2—12) 
a=2 =222 — 22— 24 

  

3 Find, in the form y = ax® + bx + ¢, the equation of the quadratic whose graph: 

a cuts the z-axis at 5 and 1, and passes through (2, —9) 

b cuts the z-axis at 2 and —31, and passes through (3, —14) 

¢ touches the z-axis at 3 and passes through (—2, —25) 

touches the x-axis at —2 and passes through (—1, 4) 

cuts the z-axis at 3, passes through (5, 12), and has axis of symmetry = =2 

-
 

0 
0
 

cuts the z-axis at 5, passes through (2, 5), and has axis of symmetry z = 1.
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Find the equation of the quadratic with graph: 

a Yy b 

16 

  

V(3,-2) 

  

a Since the vertex is (3, —2), the quadratic b  Since the vertex is (—4, 2), the quadratic 

has the form y = a(z — 3)? — 2 where has the form y = a(z +4)? +2 where 
a>0. a<0. 

When z =0, y=16 When z=-2, y=0 

16 = a(—3)% — 2 o 0=a(2)?+2 
16 =9a — 2 oo da= -2 

18 = 9a s a=-1 
a=2 The quadratic is y = —%(z +4)? + 2. 

The quadratic is y = 2(z — 3)? — 2.   
  

L& If V is the vertex, find the equation of the quadratic with graph: 

  

a Yy b Ay c 

V(2,4) , 

T 

xT 

V(2,-1) 
v 

d Yy e Ay f 

V(3,8) 

= 1 % = 7T      
5 A quadratic has vertex (2, —5), and passes through the point (—1, 13). Find the value of the 

quadratic when x = 4.
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INVESTIGATION 3 

For the quadratic y = 22% + 3z +7 we can construct 

a table of values for x =0, 1, 2, 3, 4, 5. 

We turn this table into a difference table by adding two -n---n- 

s v [ 7 [l ) 
e the row A; gives the differences between m_-—_I. 

successive y-values A 1t 1 1 

e the row A, gives the differences between _-- 

successive Aq-values. 

  

      

  

9-5 34-21 72-51 
What to do: 

1 Construct difference tables for x =0, 1, 2, 3, 4, 5 for each of the following quadratics: 

a y=2>+42+3 b y=3z2—4z ¢ y=>5z—z2 d y=422—-52+2 

2 What do you notice about the A row for each quadratic in 1? 

3 Consider the general quadratic y = az? +bx +c, a#0. 

a Copy and complete the following difference table: 

2 

4a+2b+c 

  

  

b Comment on the Ay row. 

¢ What can the circled numbers be used for? 

4 Use your observations in 3 to determine, if possible, the quadratics with the following tables of 

values: 

afa|of[1[2]3[4)] blafof1]2]3[4)] 
o5 s[5 [ 5 [0 15 52|52 

  

5 We wish to determine the maximum number of pieces into which a pizza can be cut using n 

cuts across it. 

For example, for n =1 we have which has 2 pieces 

for n =3 we have %v’fl which has 7 pieces.
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a Copy and complete: 
  

Number of cuts, n 2131415 

i maber ot ] || ]| 
b Complete the A; and Ay rows. Hence determine a quadratic formula for P,. 

  

¢ For a huge pizza with 12 cuts across it, find the maximum number of pieces which can 

result. 

3 GRAPHS 
Consider the graphs of a quadratic function and a linear function on the same set of axes. 

  

There are three possible scenarios for intersection: 

A 
cutting touching missing 

(2 points ofintersection) (1 point of intersection) (no points of intersection) 

If the line fouches the curve, we say that the line is a tangent to the curve. 

The x-coordinates of any intersection points of the graphs can be found by solving the two equations 

simultaneously. 

LR R T 

Find the coordinates of the point(s) of intersection of the 

2_2—18 and y=z —3. 

Example 15 

      

      

    
   graphs with equations y =z 

    2 y=a°—x— 18 meets y =x —3 where 

22—z —18=2z-3 

22— 22— 15=0 {RHS = 0} 
(z—-5)(z+3)=0 {factorising} 

r=>50r—3 

Substituting into y = 2 — 3, when z =5, y =2 and 

when == -3, y= —6. 

the graphs meet at (5, 2) and (-3, —6).   
  

Graphing each side of an inequality helps us to illustrate its solutions. Any points where the graphs 

intersect will lie at the endpoints of the interval(s) in the solution.
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Ao 

Consider the curves y =22 +5x +6 and y = 22+ 2z — 4. 

a Solve for z: 22+ 5z +6 =222 + 2r — 4. 

b Graph the two curves on the same set of axes. 

¢ Hence solve for z: % + 5z + 6 > 222 + 22 — 4. 

  

a 2% + 5z +6 = 22% + 2z — 4 
o 22 —3z-10=0 

s (@+2)(z—5)=0 

L r=-20rb 

b y=z>+5z+6 

= (x +2)(xz +3) has zeros —2 and —3. 

y=22+2x—4 

=2(z*+z-2) 

=2(z+2)(x —1) has zeros —2 and 1.   

  

¢ If 22+ 52 +6 > 222+ 2z —4, the graph of y = 22 + 52 + 6 is above the graph of 
y =222 +2z —4. 

This occurs when —2 < x < 5.     
  

EXERCISE 2E 

1 Find the coordinates of the point(s) of intersection of: 

a y=22-2r+8 and y=2+6 b y=-22+3r+9 and y=22—3 

¢ y=a’>—42+3 and y=22r-6 d y=—2?+42 -7 and y=>5x—4 

2 Use technology to find the coordinates of the points of intersection of the graphs with equations: 

a y=22-3r+7 and y=x+5 GRAPHING 
PACKAGE   b y=22-52+2 and y=a-7 

¢ y=—a?—-2x+4 and y=x+38 

d y=-2’+42—-2 and y=>5z—6. 

3 Consider the graphs with equations y = 2% and y=x +2. 
The solutions to x> x + 2 
are the values of = for which 

a Find the points where the graphs intersect. 

b Plot the graphs on the same set of axes. y=a? isabove y=1z +2. 

¢ Hence solve for z: 22 >z +2. 

  

4 Consider the graphs with equations y =2%+2r—3 and y =2 — 1. 

a Find the points where the graphs intersect. 

b Plot the graphs on the same set of axes. 

  

¢ Hence solve for z: 2% +2x—3>x— 1.
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5 Consider the curves y =222 —x +3 and y =2+ + 22 

a Find the points where the curves intersect. 

b Plot the curves on the same set of axes. 

¢ Hence solve for z: 222 —x +3>2+z + 22   
6 Consider the graphs with equations y = 4 and y=ax+3. 

x 

a Solve 4 x + 3 using algebra. 
T 

b Use technology to plot the graphs on the same set of axes. 

4 
¢ Hence solve for z: — >z + 3. 

xr 

oL R L LR R TS 

y=2x+k isatangentto y =22 —3x+4. Find k. 

      

  

   

y=2x+k meets y =227 —3x+4 where 

202 — 3z +4=2x+k 

222 — 5+ (4—k) =0 

A tangent is a line which 

touches the curve. 

Since the graphs touch, this quadratic has A =0 

(=5 —4(2)(4 - k) =0 
25—-8(4—k)=0 

25—-32+8k=0 

8k =17 

-   

  

7 For what value of c is the line y = 3z +c a tangent to the parabola with equation y = 22 —5z+7? 

8 Find the values of m for which the lines y = max — 2 are tangents to the curve with equation 

y=a?—4x+2. 

9 Find the gradients of the lines with y-intercept 1 that are 

tangents to the curve alongside. 
y=32+5z+4 

10 a For what values of ¢ do the lines y = = + ¢ never meet the parabola with equation 

y =222 30 —T7? 

b Choose one of the values of ¢ found in part a. Illustrate with a sketch that these graphs never 
meet. 

11 Prove that two quadratic functions can intersect at most twice.
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12 Consider the curve y = 22 +4x — 1 and DYNAMIC 
. . GEOMETRY 

the line y = 2z + ¢. Find the values of ¢ PACKAGE 

for which the line: 

a meets the curve twice 

b is a tangent to the curve 

¢ does not meet the curve. 

  

13 Show that any linear function passing through P(0, 3) 

will meet the curve y =222 —z — 2 twice. 

  

14 The graphs of y = (v —2)? and y = 2>+ bz +c 
touch when = = 3. 

Find the values of b and c.    
y=-a’+bz+c 

I3 [ BROBLEM SOLVING WITH QUADRATICS 
Some real-world problems can be solved using a quadratic equation. 

Any answer we obtain must be checked to see if it is reasonable. For example: 

e if we are finding a length then it must be positive and we reject any negative solutions 

e if we are finding “how many people are present” then the answer must be a positive integer. 

We employ the following general problem solving method: 

Step 1: 1If the information is given in words, translate it into algebra using a variable such as x. Be 

sure to define what x represents, and include units if appropriate. Write down the resulting 

equation. 

Step 2: Solve the equation by a suitable method. 

Step 3:  Examine the solutions carefully to see if they are acceptable. 

Step 4:  Give your answer in a sentence, making sure you answer the question.
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O AR (138 

A rectangle has length 3 cm longer than its width, and its area is 42 cm?. Find the width 

of the rectangle. 

If the width is # cm then the length is (z + 3) cm. 

z(z+3) =42 {equating areas} vem 

2’ +37-42=0 

—3+ /32 —4(1)(—42) 
—_— 

—3E£V177 

2 

r~ —8.15 or 5.15 

(z+3)cm 

  
We reject the negative solution as lengths are positive. 

The width is about 5.15 cm.     
EXERCISE 2F 

1 

2 

3 

4 

5 

6 

Two integers differ by 12, and the sum of their squares is 74. Find the integers. 

The sum of a number and its reciprocal is %. Find the number. 

The sum of a natural number and its square is 210. Find the number. 

The product of two consecutive even numbers is 360. Find the numbers. 

The product of two consecutive odd numbers is 255. Find the numbers. 

The number of diagonals of an n-sided polygon is given by the formula D = g(n —3). 

A polygon has 90 diagonals. How many sides does it have? 

The length of a rectangle is 4 cm longer than its width. The rectangle has area 26 cm?. Find its 

width. 

A rectangular box has a square base. Its height is 1 cm longer than its 

base side length. The total surface area of the box is 240 cm?. 

Suppose the sides of the base are 2 cm long. 

a Show that the total surface area is given by A = 622 + 42 cm?. . 

b Find the dimensions of the box. z cm 

  

An open box can hold 80 cm?®. It is made from a square piece 

of tinplate with 3 cm squares cut from each of its 4 corners. 

Find the dimensions of the original piece of tinplate. 
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Ao 

Is it possible to bend a 12 cm length of wire to form the perpendicular sides of a right angled 

triangle with area 20 cm?? 
  

  
10 

1 

14 

Suppose the wire is bent 2 cm from one end. 

The arca A= $z(12 — ) 

  

1 R area 20 cm? 
ZZ(iz o 4218 zem  (12—z)cm N om - 

- == T o x) - ecomes . 

122 — 2% —40=0 (12— ) cm 
2?2 —122+40=0 

Now A = (—12)? — 4(1)(40) 
= —16 whichis <0 

There are no real solutions, indicating this situation is impossible.   
Is it possible to bend a 20 cm length of wire into a rectangle with area 30 cm?? 

The rectangle ABCD is divided into a square and a smaller A Y B 

rectangle by [XY] which is parallel to its shorter sides. 

The smaller rectangle BCXY is similar to the original 

rectangle, so rectangle ABCD is a golden rectangle. 

. AB . . 
The ratio s called the golden ratio. D X ¢ 

Show that the golden ratio is L +2\/5.   

Hint: Let AB = z units and AD = 1 unit. 

Two trains travel along a 160 km track each day. The express travels 10 kmh~! faster and takes 

30 minutes less time than the normal train. Find the speed of the express. 

A group of elderly citizens chartered a bus for $160. 

Unfortunately, 8 of them fell ill and had to miss the trip. 

As a consequence, the other citizens had to pay an extra 

$1 each. How many elderly citizens went on the trip? 

  

A truck carrying a wide load needs to pass through the 

parabolic tunnel shown. The units are metres. 

The truck is 5 m high and 4 m wide. 

a Find the quadratic function which describes the shape of 

the tunnel. 

b Determine whether the truck will fit.  
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15 A stone is thrown into the air from the top of a cliff 60 m above sea level. The stone reaches a 

maximum height of 80 m above sea level after 2 seconds. 

a Find the quadratic function which describes the stone’s height above sea level. 

b Find the stone’s height above sea level after 3 seconds. 

¢ How long will it take for the stone to hit the water? 

[0 [ GRIMISATION WITH QUADRATIC 
The process of finding a maximum or minimum value is called optimisation. 

. . b 
For the quadratic y = a2? + bz + ¢, we have seen that the vertex has z-coordinate ——. q Y % 

   

        

s b 
e If a >0, the minimum value of y occurs at = = o 

a 

;‘\minimum 

. b i maximum 
e If a <0, the maximum value of y occurs at = = o0 =_ 

a 

Example 20 «) Self Tutor     

 

 

 

 

 

      

Find the maximum or minimum value of the following quadratics, and the corresponding value 

of z: 

a y=22+z-3 y =3+ 3z — 22? 

       
a y=22+2-3 has b y=-222+3z+3 has 

a=1, b=1, and ¢= —3. a=-2, b=3, and ¢c=3. 

Since a > 0, the shape is \/ Since a < 0, the shape is /\ 

The minimum value occurs 

when x:;b=— 
2a 

1 
2 

and y = (~})* + (~}) - 3= 34 
So, the minimum value of y is 73%, 

occurring when x = —3. Lo
l 

The maximum value occurs 

when z=_2=23 =3 
2a —4 

and y=—2(2)+3(3)+3=14% 

So, the maximum value of y is 41, 

occurring when x = %   
  

  

EXERCISE 2G 

1 Find the maximum or minimum value for each quadratic, and the corresponding value of z: 

b y=7-2r—22 

e y=4z’—x+5 

¢ y=8+2z—3a? 

f y="Tx— 22> 

a y=22-22z 

d y=222+2-1
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2 The profit in manufacturing = refrigerators per day, is given by P = —3x2 + 240z — 800 euros. 

a How many refrigerators should be made each day to maximise the total profit? 

b What is the maximum profit? 

Example 21 LR R T 

  

  

  
  

  

A gardener has 40 m of fencing to enclose a 

rectangular garden plot, where one side is an 

existing brick wall. Suppose the two new equal 

sides are  m long. 

a Show that the area enclosed is given by brick wall 

A = 2(40 — 2z) m?. 

b Find the dimensions of the garden of maximum 

area. zm 

a Side [XY] has length (40 — 2z) m. S— 

Now, area = length x width 

A = (40 — 2z) m? 

b A=0 when =0 or 20. 

The vertex of the function lies midway 

between these values, so = = 10. 

Since a < 0, the shape is /\ Y P 

the area is maximised when YZ = 10 m and XY = 20 m. 

3 A rectangular plot is enclosed by 200 m of fencing and has 

an area of A square metres. Show that: 

a A =100z —2? where z m is the length of one of its T rm 

sides 

b the area is maximised if the rectangle is a square. 

L Three sides of a rectangular paddock are to be fenced, the fourth side being an existing straight 

water drain. If 1000 m of fencing is available, what dimensions should be used for the paddock to 

maximise its area? 

5 1800 m of fencing is available to fence six identical fe——Yym —»| 

pens as shown in the diagram. 

a Explain why 9z + 8y = 1800. 

b Show that the area of each pen is given by | 

A= —2a? 4225z m?, 

¢ If the area enclosed is to be maximised, what are 

the dimensions of each pen? t 

  

  

  

rm        
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6 500 m of fencing is available to a b 

make 4 rectangular pens of identical i:‘: 

shape. Find the dimensions that 

maximise the area of each pen if the 

plan is: 

7 A tightrope connects two elevated platforms. The curve of the tightrope is given by the equation 

y = 0.00822 — 0.8z + 50. The units are metres. 

Y 

a Find the height of the platforms. 

b L is the lowest point along the tightrope. Determine the height of L above ground level. 

The graphs of y = 22 — 3z and y = 2z — 2 are 
illustrated. 

a Show that the graphs meet where = =0 and 

T = 2%4 

b Find the maximum vertical separation between the 

curves for 0 <z < 23. 

  

9 Infinitely many rectangles may be inscribed within the 

right angled triangle shown alongside. One of them is A B 

illustrated. 6em 

a Let AB=xcm and BC =y cm. 
Use similar triangles to find y in terms of x. 

b Find the dimensions of rectangle ABCD of D C 
maximum area. 

INVESTIGATION 4 

A parabola is defined as the locus of all points 

which are equidistant from a fixed point called the 

focus and a fixed line called the directrix. 

Suppose the focus is F(0, a) and the directrix is 

the horizontal line y = —a. The parabola is the set 

of all points P such that FP = NP where N is the 

closest point on the directrix to P. 

 



56  QUADRATIC FUNCTIONS (Chapter 2) 

What to do: 

1 Suggest why it is convenient to let the focus be at (0, a) and the directrix be 

the line y = —a. 

2 Use the circular-linear graph paper provided to graph the parabola which has 

focus F(0, 2) and directrix y = —2. 

3 Using the definition on the previous page: 

a 

b 

4 Consider a point P <X s f—) on the parabola 
a 

y = 

y=—a. 

Let N be the closest point on the directrix to P. 

b 

n 

Write down the coordinates of N. 

Write expressions for FP and NP. 
2 

Show that the parabola has the equation y = Z— 
a 

2 

2 
Z— with focus F(0, a) and directrix 

a 

Find the coordinates of the midpoint M of 

[FN]. 

Show that [MP] has equation 

X X 
V=% (x - ?) 
Hence prove that (MP) is a tangent to the parabola. 

Let B lie on the normal to the parabola as shown. 

Suppose a ray of light shines vertically down onto 

the parabola with angle of incidence 6 as shown. 

Notice that [BP] is parallel to [FN]. 

i Explain why MNP must equal 6. 

ii Hence explain why MFP must equal 6. 

ili Hence explain why FPB must equal 6. 

iv Hence explain why any vertical ray of light 

shining down onto a parabolic mirror will 

be reflected to the focus of the parabola F. 

v Explain what shape Misha needs in the Opening 

Problem and where he needs to place his cup. 

This experiment was performed by 

Dr Jonathon Hare and Dr Ellen McCallie 

for the television series “Rough Science”. 

  

PRINTABLE 
GRAPH PAPER 
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IR QUADRATIC INEQUALITIES 
A quadratic inequality can be written in either the form ax? 4+ bz + ¢ > 0 

or ax?+br+c>0 where a # 0. 

  

We have seen that the solutions to a quadratic equation are the z-intercepts of the corresponding quadratic 

function. 

In a similar way, the solutions to a quadratic inequality are the values of 2 for which the corresponding 

function has a particular sign. 

SIGN DIAGRAMS 

A sign diagram is a number line which indicates the values of  for which a function is negative, zero, 

positive, or undefined. 

A sign diagram consists of: 

e a horizontal line which represents the z-axis 

e positive (+) and negative (—) signs indicating where the graph is above and below the z-axis 

respectively 

e the zeros of the function, which are the x-intercepts of its graph. 

Consider the three functions below: 

  

  

  

      

  

You should notice that: 

e A sign change occurs about a zero of the function for single linear factors such as DEMO 

(x+2) and (2 —1). This indicates cutting of the x-axis. 

e No sign change occurs about a zero of the function for squared linear factors such 

as (x —1)2. This indicates touching of the z-axis. 

In general: 

e when a linear factor has an odd power there is a change of sign about that zero 

e when a linear factor has an even power there is no sign change about that zero.



  

Draw a sign diagram for: 

  

  
EXERCISE 2H.1 

Draw a sign diagram for each graph: 

  

  

  

  

€1 T IR X 

Draw a sign diagram for: 

22+ 22 -3 

  22 +2r—-3=(z+3)(z—1) 
which has zeros —3 and 1. 

P T — 
) 1   

When 2 =2 we have (5)(1) >0, 

so we put a + sign here. 

As the factors are single, the signs 

alternate. 

+ - + 
x   

—4(z — 3)? 

—4(x — 3)? has zero 3. 

<—‘—'—>x 
3 

When x =4 we have —4(1)2 < 0, 

s0 we put a — sign here. 

As the factor is squared, the signs do not 

change. 

-— L = . 
3  
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2 Draw a sign diagram for: 

a (z+4)(x—-2) (x+1)(x—5) ¢ a(x—3) 

d z(z+2) e (2z+1)(z—14) f —(z+1)(z—-3) 

g —(Bz—2)(z+1) h 22-1)3—2x) i (b—xz)(1—2x) 

3 Draw a sign diagram for: 

a (z+2)? b (z-3)2 ¢ —(z—4)? 

d 2(z+1)? e —3(z+4)> f —1(2z+5)? 

4 Draw a sign diagram for: 

a z2-9 b 4-2? ¢ 5r—a? 

d 22 -3z+2 e 2-—8z? f 62 +z—2 

g 6— 16z — 622 h —2224+92+5 i —152% — 242 

5 Draw a sign diagram for: 

a 22+ 10z +25 b 2?2 -22+1 ¢ —a?44dr—4 

d 42?2 -4 +1 e —a2—6x—9 f —42?+122-9   

QUADRATIC INEQUALITIES 

To solve quadratic inequalities we use the following procedure: 

       
Make the RHS zero by shifting all terms to the LHS. 

Fully factorise the LHS. 

Draw a sign diagram for the LHS. 

Determine the values required from the sign diagram. 

  

    

  

O AR (118 

  

    

  

  
  

Solve for x: 

a 322+5x>2 

32 + 5z > 2 z°+9 < 6z 
o 327 4+52—-2>0 s 2t —62+9<0 

s Bz—1D@E+2)>0 o (@—3)%<0 

Sign diagram of LHS is Sign diagram of LHS is 

+ - + + + . 
—2 1 3 

r<—2or x>1% So, the inequality is not true for 
any real z. 

EXERCISE 2H.2 

1 Solve for a: 

a (z—2)(z+5)<0 b 2-2)(z+3)=0 ¢ (z-1)%<0 

d (z+5)2%>0 e 2e+1)3—2)>0 f (z—-4)(22+3)<0
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2 Solve for x: 

a 2?—220 b 322 4+22 <0 ¢ a2 +42+4>0 

d 22422 -15<0 e 22 —4x—-12>0 f 322492-12<0 

3 Solve for z: 

a 22>3z b 22<4 ¢ 222 >4 

d 22 —21<4x e 224+30> 11z f o442 <2? 

g 222>2+3 h 42?2 —424+1<0 i 6224+ T7r<3 

i 322 >8(z+2) k 222 —42+2>0 I 622 +1< 5z 

m 1+ 5z < 62?2 n 1222 > 5z +2 o 222+9> 09   
  

ECIITEIN ) Self Tutor 
Find the value(s) of k for which the function y = ka2 + (k + 3)x — 1: 

a cuts the z-axis twice b touches the x-axis ¢ misses the x-axis. 

a=k, b=k+3, c=-1 

  

A =b? — dac 

= (k+3) — 4(k)(-1) 
— k24 6k+9+4k So, A has sign diagram: + — + k 

— k2 410k +9 - o 
=(k+9)(k+1) 

a The graph cuts the z-axis twice if A >0 . 
i 9 i L k40 The discriminant A 

<=9 or k>-1 k#0. is a quadratic in k, 
b The graph touches the z-axis if A =0 so we must solve a 

k=-9 or k=—1. quadratic inequality. 

¢ The graph misses the z-axis if A <0 

—-9<k< -1 

  

    
4 For each quadratic function, find the values of & for which the function: 

i cuts the z-axis twice i touches the x-axis ili misses the x-axis. 

a y=222+kx—k b y=ka>-2r+k c y=a?+(k+2)x+4 

5 For each quadratic equation, find the values of & for which the equation has: 

i two real roots ii a repeated real root iii no real roots. 

a 202+ (k—2x+2=0 b 22+ 3k—1)z+ (2k+10)=0 

¢ (k+1)2’+kz+k=0   

  6 For what values of m is y = (m — 2)z% + 6z + 3m: 

a positive definite b negative definite?
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7 Consider the curve y = —22+ 37— 6 and Drnamic 
the line y = mx — 2. Find the values of m PACKAGE 

for which the line: 

a meets the curve twice 

b is a tangent to the curve 

¢ does not meet the curve. 

REVIEW SET 2A 

1 Use the vertex, axis of symmetry, and y-intercept to graph: 

a y:(w—2)2—4 b y=—%(z+4)2+6 

2 Find, in the form y = az?® + bz + ¢, the equation of the quadratic whose graph: 

a touches the z-axis at 4 and passes through (2, 12) 

b has vertex (—4, 1) and passes through (1, 11). 

3 Find the maximum or minimum value of y = —22% +4x + 3, and the value of = at which this 

occurs. 

& Find the points of intersection of y = 22 — 3z and y = 32> — 5z — 24. 

5 For what values of k does the graph of y = —222 + 52 + k not cut the z-axis? 

6 Find the values of m for which 222 — 32 +m =0 has: 

a a repeated root b two distinct real roots ¢ no real roots. 

7 The sum of a number and its reciprocal is 23—10. Find the number. 

8 Show that no line with a y-intercept of 10 will ever be tangential to the curve with equation 

y =322+ Tz — 2. 

9 a Write the quadratic y = 222 + 62 — 3 in the form y = a(z — h)? + k. 

b Hence sketch the graph of the quadratic. 

10 Find the equation of the quadratic with graph: 

a y b 

  

(2,—20) 

  

11 Draw the graph of y = —z2 + 2z. 

12 Find the y-intercept of the line with gradient —3 which is a tangent to the parabola 

y=27%—5z+ 1. 

13 For what values of k would the graph of y = 22 —2x +k cut the z-axis twice?
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14 

15 

16 

17 

19 

QUADRATIC FUNCTIONS  (Chapter 2) 

The graph shows the parabola y = a(x + m)(z +n) where m > n. 

Yy a State the sign of: 

i the discriminant A ii a. 

b Find, in terms of m and n, the: 

i coordinates of the z-intercepts A and B 

ii equation of the axis of symmetry. 

Find the quadratic function which cuts the z-axis at 3 and —2 and which has y-intercept 24. 

Give your answer in the form y = az? + bz + c. 

For what values of m are the lines y = mxz — 10 tangents to the parabola y = 322 + Tz + 2? 

When Annie hits a softball, the height of the 

ball above the ground after ¢ seconds is given 

by h = —4.9t% + 19.6t + 1.4 metres. Find the 
maximum height reached by the ball. 

  

Draw a sign diagram for: 

a 3z+2)(4—x) b —a2?+3z+18 

Solve for z: 

a B3—z)(z+2)<0 b 22—42-5<0 ¢ 222 +2>10 

Find the values of k for which the function f(z) =2 + kx + (3k — 4): 

a cuts the x-axis twice b touches the z-axis ¢ misses the x-axis. 

AT ] 

1 Consider the quadratic y = %(z —2)? — 4. 

a State the equation of the axis of symmetry. 

b Find the coordinates of the vertex. 

¢ Find the y-intercept. 

d Sketch the function. 

Consider the quadratic y = —3z2 + 87 + 7. Find the equation of the axis of symmetry, and 

the coordinates of the vertex. 

Use the discriminant only to find the relationship between the graph and the z-axis for: 

a y=222+3z—7 b y=-322-7z+4 

Determine whether each quadratic is positive definite, negative definite, or neither: 

a y=-222+3z+2 b y=3x2+z+11
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5 Find the equation of the quadratic with vertex (2, 25) and y-intercept 1. 

6 Consider the quadratic y = 2% + 4z — 1. 

a State the axis of symmetry. b Find the coordinates of the vertex. 

¢ Find the axes intercepts. d Hence sketch the function. 

7 a Find the equation of the quadratic illustrated. 

b Hence find its vertex and axis of symmetry. 

  

8 a For what values of ¢ do the lines with equations y = 3z + ¢ intersect the parabola 

y=a%+2—5 intwo distinct points? 

b Choose one such value of ¢ and find the points of intersection in this case. 

9 Find the maximum or minimum value of each quadratic, and the corresponding value of x: 

a y=322+42+7 b y=-222-5z+2 

10 The graph of a quadratic function cuts the z-axis at —2 and 3, and passes through (-3, 18). 

a Find the equation of the function in the form y = ax® + bz + c. 

b Write down the y-intercept of the function. 

¢ Find the coordinates of the vertex. 

1 y = P w Consider the graph of y = 2 + ma + n. 

a Determine the values of m and n. 

(3. %) b Hence find the value of k. 

(L, 3) 

  

12 An open square-based box has capacity 120 mL. It is made from a square piece of tinplate with 

4 cm squares cut from each of its corners. Find the dimensions of the original piece of tinplate. 

13 Consider y = —2% -3z +4 and y =22+ 5z +4. 

a Solve for 21 —2? -3z +4=2%+5z+4. 

b Sketch the curves on the same set of axes. 

¢ Hence solve for z: 2%+ 5z +4 > —2? — 3z + 4. 

14 Consider the graph of y = ax?+bx+c alongside. 

Determine the sign of: 

aa b b ¢ c d A 

Give reasons for your answers.     
y=az+bx+c
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15 For each of the following quadratics: 

i Write the quadratic in completed square form. 

ii  Write the quadratic in factored form. 

iii Sketch the graph of the quadratic, identifying its axes intercepts, vertex, and axis of 

symmetry. 

a y=2>+42+3 b y=2>+2z-3 

¢ y=22>—-8x-10 d y=—2?+62+7 

16 Two different quadratic functions of the form y = 922 — kx +4 both touch the z-axis. 

a Find the two values of k. 

b Find the point of intersection of the two quadratic functions. 

17 600 m of fencing is used to construct 6 rectangular animal ‘ rm 

pens as shown. ' ' 

a Show that the area A of each pen is 

A=z (@) el 

b Find the dimensions of each pen so that it has the 

maximum possible area. 1 1 

¢ What is the area of each pen in this case? 

  

+ym 

  

  

    
  

18 Draw a sign diagram for: 

a 22-3z-10 b —(z+3)? 

19 Solve for z: 

a 422 -32<0 b 222-32-52>0 ¢ dr<2?+1 

20 Find the values of m for which the function y = ma? + 5z + (m + 12): 

a cuts the z-axis twice b touches the z-axis ¢ misses the x-axis.
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OPENING PROBLEM 

The charges for parking a car in a short-term car park at an airport are shown in the table and graph 

below. The total charge is dependent on the length of time ¢ the car is parked. 

Car park charges 

Time t (hours) | Charge 304 charge (£) — 1 T T 7 

0<t<1 

1<t<2 20 ] 

  

  

  

2<t<3 

3<t<6 I 
  

  

6<t<9 

9<t<12 time (hours) 

12<t<24 0 3 6 9 12 15 18 21 24 

                      

  

Things to think about: 

a What values of time are illustrated in the graph? 

b What are the possible charges?   ¢ What feature of the graph ensures that there is only 

one charge for any given time? 

  

In the course so far, we have studied several different relationships between variables. In particular, for 

two variables z and y: 

o A linear function is a relationship which can be expressed in the form y = ax +b where a, b are 

constants, a # 0. 

e A quadratic function is a relationship which can be expressed in the form y = az?+bx-+c where 

a, b, ¢ are constants, a # 0. 

In the Opening Problem we see another type of relationship, between the two variables time and charge. 

We call this a piecewise function because its graph has several sections. 

In this Chapter we explore what it really means for the relationship between two variables to be called 

a function. We will then explore properties of functions which will help us work with and understand 

them. 

  

NCTIONS 

A relation between variables = and y is any set of points in the (z, y) plane. 

We say that the points connect the two variables. 

A relation is often expressed in the form of an equation connecting the variables x and y.
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2 For example, y =2+ 3 and x =y~ are the equations of two relations. Each equation generates a set 

of ordered pairs, which we can graph: 

    

Ay 
    

    

    

    

  

    

    

              

  

                                    

  

    

However, not all relations can be defined by an equation. Below are two examples: 

  

1 Y (2) 

T 

The set of all points in the first quadrant These 13 points form a relation. It can be 

is the relation = >0, y > 0. described as a finite set of points, but not 

by an equation. 

FUNCTIONS 

A function is a relation in which no two different ordered pairs have the same 

z-coordinate or first component. 

We can see from this definition that a function is a special type of relation. 

Every function is a relation, but not every relation is a function. 

ALGEBRAIC TEST FOR FUNCTIONS 

Suppose a relation is given as an equation. If the substitution of any value for z 

results in at most one value of y, then the relation is a function. 

For example: 

e y=3xr—1 isa function, since for any value of z there is only one corresponding value of y 

  e x=1y? isnota function, since if x =4 then y = £2. 

GEOMETRIC TEST OR VERTICAL LINE TEST FOR FUNCTIONS 

Suppose we draw all possible vertical lines on the graph of a relation. 

e If each line cuts the graph at most once, then the relation is a function. 

e If at least one line cuts the graph more than once, then the relation is not a function.
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Example 1 o) Self Tutor 

Which of the following relations are functions? 

  

    

  

a AY c Y DEMO 

» - > 
xT x 

xT 

vy 

a function a function not a function 

  

GRAPHICAL NOTE 

e If a graph contains a small open circle such as —o——, this point is not included. 

e If a graph contains a small filled-in circle such as ———e , this point is included. 

e If a graph contains an arrowhead at an end such as ——, then the graph continues indefinitely 

in that general direction, or the shape may repeat as it has done previously. 

EXERCISE 3A 

1 Use algebraic methods to decide whether these relations are functions. Explain your answers. 

a y=2>2-9 b z4+y=9 ¢ 22 +y?=9 

2 Use the vertical line test to determine which of the following relations are functions: 

Y 

I A 
B A 

  

3 s it possible for a function to have more than one y-intercept? Explain your answer. 

L Ts the graph of a straight line always a function? Give evidence to support your answer.
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5 The managers of a new amusement park are discussing the 

schedule of ticket prices. Maurice suggests the table alongside. 

Explain why this relation between age and cost is not a 

function, and discuss the problems that this will cause. 

0 - 2 years (infants) 

2 - 16 years (children) 

16+ years (adults) 

  

2 and 6 The graph alongside shows the curves y = 

y? =, 

a Discuss the similarities and differences between 

the curves, including whether each curve is 

a function. You may also consider what 

transformation(s) map one curve onto the other. 

  b Using y? =z, we can write y = /7. 

i What part of the graph of y? =z 

corresponds to y = \/x? 

il Is y =+/z afunction? Explain your answer. 

  

7 The graph alongside shows the curves y = 2® and 
¥ = 1. 

a Explain why both of these curves are functions. 

b For the curve y® = x, write y as a function of z. 

  

In the Opening Problem: 

e s the relation describing the car park charges a function? 

e If we know the #ime somebody parked for, can we determine the exact charge they need to pay? 

e If we know the charge somebody pays, can we determine the exact time they have parked for? 

[N FUNCTION NOTATION 
Function machines are sometimes used to illustrate how functions behave. 

If 4 is the input fed into the machine, 

the output is  2(4) +3 = 11. 

  

The above “machine” has been programmed to perform a particular function. If we use f to represent 

that particular function, we can write “f is the function that will convert = into 2z + 3.”



70  FUNCTIONS (Chapter 3) 

So, f would convert 2 into  2(2)+3=7 and 

—4 into 2(—4)+ 3= —5.   

This function can be written as: 

fix—2c+3 f(z) is read as 
N, e’ - - 

fof a”. 

function f such that z is converted into 2x + 3 

  

Two other equivalent forms we use are f(z) =2z +3 and y =2z + 3. 1 

f(x) is the value of y for a given value of z, so y = f(z). 

  

f is the function which converts = into f(z), so we write 
  

  

  

  

  

  

  

  

  

) 

y = f(z) is sometimes called the function value or image of . 

For f(z) =2z +3: 

o f(2)=2(2)+3=T7 e - 
  the point (2, 7) lies on the graph of the function. 

o f—4)=2(-4)+3=-5 
the point (—4, —5) also lies on the graph. 

  

  

  

                  

  

                    

  

Example 2 o) Self Tutor 

If f: 2w~ 22%— 3z, find the value of: 

a f(5) b f(—4) 

f(z) =227 — 3z We use brackets to help 

a f(5)=2(5)%-3(5) {replacing z with (5)} avoidleontucion 

=2x25—-15 

=35 

b f(—4) =2(-4)> —3(—4) {replacing z with (—4)} 

=2(16) + 12 
=44 

  

  
EXERCISE 3B 

1 If f: 2~ 3242, find the value of: 

a f(0) b f(2) ¢ f(=1) d f(=9) e f(-3) 

2 If f(z)=3z—2?+2, find the value of: 

a f(0) b f(3) ¢ f(=3) d f(=7) e f(3) 

3 If g: z>—>z—é, find the value of: 
x 

a g(1) b g(4) ¢ g(-1) d g(—4) e g(-3)
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4 The graph of y = f(z) is shown alongside. AY 

a Find: 

i 12 i f(3) 
b Find the value of = such that f(z) = 4. 

  

  

  

  

                        

  

    
  5 Suppose G(z)= Z;jf 

a Evaluate: i G(2) it G(0) jii G(—%) 

b Find a value of « such that G(x) does not exist. 

¢ Find z such that G(z) = —3. 

[k ) Self Tutor 

If f(z)=5—a —a?%, find in simplest form: 

a f(—z) b flz+2) ¢ fle—1)—5 
  

a f(-z)=5-(—2)— (-=z)° {replacing x with (—z)} 

=54z —z? 

b flz+2)=5—(2+2)— (¢+2)* {replacing = with (x4 2)} 
=5—g—2—[z%+4z +4] 

=3-—z—z>—4z—4 

=—a?_-5z—1 

¢ fz—1)-5=06-(z-1)—-(x—1)> -5 {replacing x with (z —1)} 

=5—-z+1—(z®—2z+1)-5 
=—z?+z 

  

  

  

  
6 If f(x)=7- 3z, find in simplest form: 

  
a f(a) b f(-a) ¢ fla+3) 
d f(2a) e fz+2) f fle+h) 

7 If F(z)=22?+3z—1, find in simplest form: 

a F(z+4) b F(2—ux) ¢ F(-x) 

d F(2?) e F(3x) f F(z+h) 

8 If f(x) =22, find in simplest form: 

a f(32) b f(%) ¢ 3f(2) d 2f(z—1)- 

9 If f(z)= l, find in simplest form: 
x 

  a f(-z) b f(%x) ¢ 2f(z)+3 d 3f(z—1)A 

10 f represents a function. Explain the difference in meaning between f and f(z).
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11 On the same set of axes, draw the graphs of three different functions f(z) such that f(2) =1 and 

f(5)=3. 

12 Find a linear function f(x) =ax+b for which f(2) =1 and f(-3) =11 

13 Samantha is filling her car with petrol. The amount of petrol in the tank after ¢ minutes is given by 

P(t) =5+10t litres. 

a Find P(3), and interpret your answer. 

b Find ¢t when P(t) =50, and explain what this represents. 

¢ How many litres of petrol were in the tank when Samantha started to fill it? 

  

14 For a hot air balloon ride, the function H(t) gives (metres) 

the height of the balloon after ¢ minutes. Its graph 

is shown alongside. 

  

  

  

  a Find H(30), and explain what your answer 
means. 

b Find the values of ¢ such that H(t) = 600. 
Interpret your answer. 

  

  

  

  

¢ For what values of ¢ was the height of the 

balloon recorded? 
  

  

d  What range of heights was recorded for the 

balloon? 
  t (minutes) 
                    

  

  15 Given f(z)=az+ E, f(1)=1, and f(2) =5, find constants a and b. 
T     16 The quadratic function 7'(z) = aa® + bx + ¢ has the values 7(0) = —4, 7(1) = —2, and 

T(2) = 6. Find a, b, and c. 

17 The value of a photocopier ¢ years after purchase is given by o 

V() = 9000 — 900¢ pounds. - 

a Find V(4), and state what V(4) means. 

b Find ¢t when V(¢) = 3600, and explain what this means. 

¢ Find the original purchase price of the photocopier. 

d  For what values of ¢ is it reasonable to use this function? 

  

AN DOMAIN AND RANGE 
We have seen that a relation is a set of points which connects Y 

two variables. 

The domain of a relation is the set of values which the 

variable on the horizontal axis can take. This variable is 

usually z. 

  

The range of a relation is the set of values which the variable i i 
on the vertical axis can take. This variable is usually y. ‘«— domain —» z
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The domain and range of a relation can be described using set notation, interval notation, or a number 

line graph. For example: 

{zz>3} 

{z|z<2} 

  

the set of all = such 

that = is greater than 

or equal to 3 

the set of all = such 

that z is less than 2 

  

{z|-2<z<1} 
the set of all = such 

that x is between —2 

and 1, including 1 
  

  

{z|z<0 or >4}   

  

the set of all = such 

that x is less than or 

equal to 0, or greater 

than 4 

        
DOMAIN AND RANGE OF FUNCTIONS 

To find the domain and range of a function, we can observe its graph. For example: 

(1) In the Opening Problem, the car 

park charges function is defined for 

times ¢ such that 0 <t < 24. 

the domainis {t |0 <t < 24}. 

The possible charges are £5, £9, 

£11, £13, £18, £22, and £28. 

the range is 

{5, 9, 11, 13, 18, 22, 28}. 

(2) Y 

(-1,-3) 

(3) v 

30 

20 

10 

  

  

  

  

  

                        

A charge (£) T T 4 

?—. 

)—‘ 

o—e 

—e 

time (hours) 

0 3 6 9 12 15 18 21 24 > 

All values of x > —1 are included, 

so the domainis {z | z > —1}. 

All values of y > —3 are included, 

so the range is {y |y > —3}. 

    z can take any value, 

so the domain is 

{x €R} or z€R. 

y cannot be > 1, 
so the range is {y |y < 1}. 

  

      
x € R means 

“x can be any 

real number”.
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x can take all values except 2, 

so the domain is {z | z # 2} or x #2. 

y can take all values except 1, 

sothe range is {y |y # 1} or y #1. 

  

To fully describe a function, we need both a rule and a domain. 

2 For example, we can specify f(z) = 2* where x > 0. 

If a domain is not specified, we use the natural domain, which is the largest part of R for which f(z) 

is defined. 

Some examples of natural domains are shown in DOMAIN f(x) | Natural domain 
AND RANGE 

the table opposite. 

Click on the icon to obtain software for finding the 

natural domain and range of different functions. 

  

  

BT TS, 
For each of the following graphs, state the domain and range: 

a y b Yy 

(4,3) 

T T 

(5.-2) -1 

a Domainis {z|z <8} b Domainis {z € R} 

Rangeis {y|y>—2} Rangeis {y|y>—1}     
  

EXERCISE 3C 

1 A driver who exceeds the speed limit receives demerit Amount over speed 

points as shown in the table. Jimit (z kmh—1) Demerit points (1) 

a Draw a graph to display this information. 0<z<10 

b Find the domain and range of the relation. 10 <z <20 

20 

30 

  

/ 

z <30 

x < 45 

x> 45 

N 
IN

 

© 
N 

ot
 
W 

N 
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2 This graph shows the temperature in Barcelona over temperature (7" °C) 

a 30 minute period as the wind shifts.   

a Explain why a temperature graph like this must 

be a function. 

  

  

b Find the domain and range of the function. 
  

    

    
                

  

  

3 For each of the following graphs, find the domain and range: 

a y b y < 
(-1,3) 

(-LY) ®.3) 

    

4 Consider the graph of y = f(x) alongside. 

Decide whether each statement is true or false: 

a —b5 is in the domain of f. 

b 2 is in the range of f. 

¢ 9 is in the range of f. 

d /2 is in the domain of f. 
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5 Use quadratic theory to find the range of each function: 

a y=a? b y=—22 c y=a>+2 

d y=-2(x+3)? e y=1-(z—-2)2 fy=02z+1)2+3 

g y=a>—Tx+10 h y=—-22+2zx+8 i f:x br— 322 

  

BTN 
State the domain and range of each of the following functions: 

a f(z)=vz-5 b f(z)=     

D) 

  

a Va—5 isdefinedwhen z—-52>0 

Loxr=h 

the domain is {z |z > 5}. 

A square root cannot be negative. 

the range is {y | y > 0}. 

  is defined when x —5#0 

Y 

the domain is {z | = # 5}. 

No matter how large or small z is, 

y = f(z) is never zero. 

the range is {y | y # 0}. 

1 
E is defined when = —5>0 = 

z>5 

the domain is {x | x > 5}. 

y = f(z) is always positive and never zero. 

the range is {y | y > 0}. 

  

  

    
6 Consider the function f(z) = /z. 

a State the domain of the function. DOMAIN 
AND RANGE 

b Copy and complete this table of values: nn 

  

¢ Hence sketch the graph of the function. 

d Find the range of the function. 

7 State the domain and range of each function: 

  a2 f(@)=VETo b fiom o ¢ f@)=— 

d y:—L e f:x— 1 f fie—Vi—2a   

VT 33—z
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Example 6 '1>)) Self Tutor 

  

     

       

  

    

Use technology to help sketch these functions. Locate any turning points. Hence state the domain 

and range of the function. 

a fl@)=—-a*+22-7 b f(Jc):fol 
x 

a b 

x 

(0.794, —5.81) 
(—0.794,1.89) 

xT 

fl@)=—a*+22-7 f@)=2"—3 

The domain is {z | z € R}. The domain is {z |z # 0}. 

The range is {y |y < —5.81}. The range is {y | y € R}. 

8 Use technology to help sketch these functions. Locate any turning points. GRAPHING 
. . PACKAGE 

Hence state the domain and range of the function. 

a fl@)=2>-322-92+10 b f(z)=2*+42% 16z +3 

  

  

  

¢ flz)=+a2+4 d f(z)=+va?—-4 

e f(x)=+v9—a? f f(z)= zt+4 Locating any turning points is 
z—2 important for finding the range. 

. 3z-9 o l 
g f(if)*m h fla)=z z 

. 1 . 3 1 | fe) =t L | )= 
k f(z)=3" I flx)=22"" X 

9 Use technology to sketch these functions on their given domain. Locate the points at the end(s) of 

the domain, as well as any turning points. Hence state the range of the function. 

a y=—2*+222+522+x+2, 0<r<4 

b y=-20+522+2+2 -2<2<2 
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CINNT RATIONAL FUNCTIONS 
Linear and quadratic functions are the first members of a family called the polynomials. The polynomials 

can all be written in the form y = ag + a 2z + asz? + azz® + ... 

When a polynomial is divided by another polynomial, we call it a rational function. 

However, in this course we consider only the simplest cases of a linear function divided by another linear 

function. 

RECIPROCAL FUNCTIONS 

A reciprocal function is a function of the form y = E, k#0. 
x 

The graph of a reciprocal function is called a rectangular hyperbola. 

The simplest example of a reciprocal function is f(z) = l Its graph is shown below. 
T 

Notice that: 

e The graph has two branches. vertical 

1 asymptote 

e y = — is undefined when x = 0, so the =0 
xT 

domain is {z | x # 0}. 

On a sign diagram, we indicate this value with 

a dashed line. 

  

   / 
~ : + - horizontal 

0 asymptote 

(-1,-1) y=0 

e The graph includes two asymptotes, which are 

lines the graph approaches but never reaches. 

» 2 =0 is a vertical asymptote. 

  

   

        

. _ 1 
We write: as  — 07, = — — 

xT 

L1 
as *r— 0", = — o0 

xT 
1 — means 

When “as z — 0%, - 00” is read out loud, “approaches” or 
1 “tends to”. 

we say “as x tends to zero from the right, — 
x 

tends to infinity.” 

> y =0 is a horizontal asymptote. 

We write: as x — oo, — 0t 

8
=
 

8
|
~
 

as r — —o0, — 0 

« 1 . 
When “as x — oo, — — 07 is read out loud, 

T 

. . 1 
we say “as z tends to infinity, — tends to zero 

x 

from above.”
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When sketching the graph of a reciprocal function, it 

is useful to determine some points which lie on the 

graph. 

The reciprocal function y = k passes through the 
x 

points (1, k), (k, 1), (-1, —k), and (—Fk, —1). 

  

EXERCISE 3D.1 

1 a Sketch the graphs of y = l, y = g, and y = 4 on the same set of axes. PEMO 
x T x 

b For the function y = E, k> 0: 
T 

i Describe the effect of varying k. 

i State the quadrants in which the graph lies. 

iii Draw a sign diagram for the function. 

1 2 4 
2 a Sketch the graphs of y = —=, y=—=, and y = —— on the same set of axes. 

x x T 

b For the function y = E, k<O0: 
xT 

i Describe the effect of varying k. 

ii State the quadrants in which the graph lies. 

iii Draw a sign diagram for the function. 

3 For the reciprocal function y = E, k #0, state: 
x 

a the domain b the range 

¢ the vertical asymptote d the horizontal asymptote. 

4 Determine the equation of each reciprocal function: 

a Yy b < Yy 

(6,1) (-9.4) 
xT 

T 

  

  RATIONAL FUNCTIONS OF THEFORM y = 2>t £ I 
cx+d   

We now consider the rational functions which result when a linear function is divided by another linear 

function. 

The graphs of these rational functions also have horizontal and vertical asymptotes.
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INVESTIGATION 

What to do: 

1 Use technology to examine graphs of the following functions. For each graph: NG 

i State the domain. ii Write down the equations of the asymptotes. 

_ B] _3z+1 _2z-9 

ay=-l+-= b V=212 C VT332 

2 Experiment with functions of the form y = b p +a where b, c#0. 
CIT + 

For an equation of this form, state the equation of: 

    
a the horizontal asymptote b the vertical asymptote. 

3 Experiment with functions of the form y = & ”2 where ¢ # 0. 
CT + 

a For an equation of this form, state the equation of the vertical asymptote. 

b Can you see how to quickly write down the equation of the horizontal asymptote? Explain 

your answer. 

e For a function written in the form y =   +a where b, ¢ #0: 

    

cx+d 

> the vertical asymptote is = = _d > the horizontal asymptote is y = a. 
c 

. 9 9 axr +b 
e For a function written in the form y = 7 where ¢ # 0: 

CT + 

> the vertical asymptote is = = _d > the horizontal asymptote is y = 2 
c c 

  

A 
+4.   Consider the function y = > e 

a Find the asymptotes of the function. b Find the axes intercepts. 

¢ Use technology to help sketch the function, including the features found in a and b. 

a The vertical asymptote is x = 2. c 

The horizontal asymptote is y = 4. 

b When y =0, L:74 
T —2 

—4(x—-2)=6 

—4z+8=6 

o —dr=-2 

= 1 
2 

When z =0, y=%+4=1 

So, the a-intercept is % and the 

y-intercept is 1.      
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B  Fetpedfom] 
y 

  

EXERCISE 3D.2 

1 For each of the following functions: 

Find the equations of the asymptotes. ii State the domain and range. 

Find the axes intercepts. 

iv Discuss the behaviour of the function as it approaches its asymptotes. 

v Sketch the graph of the function. 

      a f(:v):gv_2 b f:zn—>2+zi3 

  

LR R (T 

x—1 
Draw a sign diagram for . 

& et 2¢+1 

  

is zero when x =1 and undefined when o = —3. 

- i T When 2 =10, 
1 

Since (z —1) and (2z+ 1) are 
single factors, the signs alternate. 

  

2 Draw the sign diagram for: 

a 

   
        

  

    

a T+ 2 b T c rz+1 r—2 

z—1 z+3 z+5 2z +1 

e 2z +3 f 4z —1 g 3z h —8x 
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Example 9 o) Self Tutor 

Consider the function f(z) = 

Find the vertical asymptote of the function. b Find the axes intercepts. 

Rearrange the function to find the horizontal asymptote. 

Draw a sign diagram of the function. 

Hence discuss the behaviour of the function near the asymptotes. 

Sketch the function, showing the features you have found. 

The vertical asymptote is = = 1. 

f(0) = %1 = —1, so the y-intercept is —1. 

f()=0 when 2z+1=0 
o 1‘:71 2 

1 the z-intercept is —3. 

fw) = 24 
_2(z-1)+3 

e} 

243 
el 

the horizontal asymptote is 

becomes infinitely 

small.   
4 For each of the following functions: 

i Find the equation of the vertical asymptote. 

il Find the axes intercepts. 

iii  Rearrange the function to find the horizontal asymptote. 

iv. Draw a sign diagram of the function. 

v Hence discuss the behaviour of the function near its asymptotes. 

vi Sketch the graph of the function. 

      

      

+3 3z -1 a f(z):zil b f:z»—»i_z c f(z)=:+2 

2 + 1 20+ 4 3 d flo) =25 e fram I f @)=
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5 Consider the function y = aa:iz, where a, b, ¢, d are constants and ¢ # 0. 
cxr 

  

State the domain of the function. 

b State the equation of the vertical asymptote. 

¢ Find the axes intercepts. 

ar +b 
d  Show that for ¢ # 0, s     

Hence explain why the horizontal asymptote is y = Z 
c 

ACTIVITY 

Click on the icon to run a card game for rational functions. GAME 

  

LA COMPOSITE FUNCTIONS 
Given f: 2+ f(z) and ¢: z+ g(z), the composite function of f and g will convert x 

into f(g(x)). 
fog is used to represent the composite function of f and g. It means “f following g”. 

(fog)(z)=f(g(x)) or fog:z— f(g()) 

Consider f: x — 2? and g: x— 2z + 3. 

fog means that g converts x to 2z + 3 and then f converts (2z+3) to (2x +3)*. 

This is illustrated by the two function machines below. 

T 

1 [ g-function machine 

1 double 27 +3 
and then 
add 3 l f-function machine 

% I raise a 
number to I 1 

the power 4 

    

        

(2z+3)* 
    Notice how f is 

following g. 
  

 



Algebraically, if f(z) =2* and g(z) =2z +3 then 

(fog)(@) = flg(x)) 
= f(2z+3) {g operates on z first} 

= (22 +3)"  {f operates on g(z) next} © 

and (go f)(z) = g(f(x)) 
= g(a*) {f operates on z first} 

=2(2)+3  {g operates on f(z) next} 

=221 43 

So, [f(g(x)) # g(f(x)). 

In general, (fog)(x) # (g0 f)(x). 

  

3 CL PR ) Self Tutor 

Given f: a2 —2x+1 and g: x+— 3 — 4z, find in simplest form: 

(fog)(@) (90 f)(=) 

f()=2z+1 and g(z)=3—4x 

(fog)(z) = f(9(2)) (g0 f)(x) = g(f(2)) 
= f(3 —4x) =g(2z+1) 

=2(3—4dz)+1 =3-4(20+1) 
=6—8z+1 =3-8z—-4 

=7-8z =-8r—1 

  

  

In the previous Example you should have observed how we can substitute an expression into a function. 

If f(x)=2x+1 then f(A)=2(A)+1 

andso f(3—4z) =2(3—4x)+ 1. 

  

Example 11 O R (TTT8 

Given f(z) =6z —5 and g(z) =22+, find: 

(9o N)(=1) (f o £)(0) 

(g0 /)(=1) = g(f(-1)) (f o £)(0) = F(f(0)) 

Now f(=1)=6(-1)—5 Now f(0) =6(0)—5 
=-11 =-5 

v (9o f)(=1) =g(-11) oo (fef)(0) = f(=5) 
(—11)% + (—11) =6(-5)—5 

=110 =-35 

 



FUNCTIONS  (Chapter 3) 85 
  

You should be aware that the domain of the composite of two functions depends on the domains of the 

original functions. 

For example, consider f(z) = 2> with domain 2 € R and g(z) = /2 with domain z > 0. 

(fog)(x) = flg(x)) 
= (Va)? The domain of (fog)(xz) is x>0, notR, since (fog)(x) 

=z is defined using function g(z). 

EXERCISE 3E 

1 Given f:2—2x+3 and ¢g: o+~ 1—z, find in simplest form: 

a (fog(x) b (g0 f)(z) ¢ (fog)(=3) d (g0 /)(0) 

2 Given f:x+~— —2v and g: x+ 1+ 22 find in simplest form: 

a (fog)(x) b (9o f)(x) ¢ (fog)(2) d (fo (=D 

3 Given f(z)=3-—2% and g(z) =22 +4, find in simplest form: 

a (fog)lx) b (gof)(x) < (909)(3) d (fof)(=3) 

4 Given f(x)=+6—x and g(z) =5x—7, find: 

a (geog)(a) b (fog)(1) ¢ (g0/)(6) d (foN) 

5 Suppose f:ax—ax?+1 and g: x+— 3 — . 

a Find in simplest form: 

i (fog)(x) it (gof)=) 
b Find the value(s) of = such that (go f)(z) = f(x). 

9—/x and g(z) =22 +4. 

fog)(xz) and state its domain and range. b Find (go f)(4). 

6 Suppose f(x) 

a Find ( 

( ¢ Find (fo f)(x) and state its domain and range. 

7 Suppose f(x)=1-—2z and g(x) =3z +5. 

a Find f(g(x)). b Hence solve (fog)(z) = f(z+3). 

8 Suppose f: a2z —2% and g: x+— 1+ 3. 

a Find in simplest form: 

i (fog)() i (gof)(@) 
b Find the value(s) of = such that (f o g)(z) =3(go f)(z). 

9 For each pair of functions, find (f o g)(z) and state its domain and range: 

a f(z):l and g(z)==z—3 b f(z):—% and g(z) =22 + 32 +2 
x 

10 a If az+b=cx+d forall values of x, show that a =c and b=d. 

Hint: If it is true for all z, it is true for =0 and = = 1. 

b Given f(z) =22r+3 and g(z) = ar+b and that (fog)(x) = for all values of z, 

deduce that a =3 and b= —3. 

¢ Is the result in b true if (go f)(z) =2 for all 2?



86  FUNCTIONS (Chapter 3) 

11 Suppose f(z)=+T—x and g(v) =22 Find: 

a (fog)(x) b the domain and range of (f o g)(x). 

12 Suppose f(x) and g(x) are functions. f(x) has domain Dy and range Ry. g(x) has domain D, 

and range R,. 

a Under what circumstance will (f o g)(x) be defined? 

b Assuming (fog)(z) is defined, find its domain. 

DA INVERSE FUNCTIONS 
The operations of + and —, x and -+, are inverse operations as one “undoes” what the other does. 

r—3 
The function y = 2z + 3 can be “undone” by its inverse function y = 3   

We can think of this as two machines. If the machines are inverses then the second machine undoes what 

the first machine does. 

No matter what value of x enters the first machine, it is returned as the output from the second machine. 

1 

input 1 L 
  

    

  

      
  

y=2x+3 —\1 output 

function 5 

input l z—3 
Y= 2 l 

1       

inverse function 1 output 

A function y = f(x) may or may not have an inverse function. To understand which functions do have 

inverses, we need some more terminology. 

ONE-TO-ONE AND MANY-TO-ONE FUNCTIONS 

A one-to-one function is any function where: 

e for each x there is only one value of y and 

e for each y there is only one value of x. 

Equivalently, a function is one-to-one if f(a) = f(b) only when a =b. 

One-to-one functions satisfy both the vertical line test and the horizontal line test. 

This means that: 

e 1o vertical line can meet the graph more than once 

e no horizontal line can meet the graph more than once.
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For example, f(z) = 2 is one-to-one since it passes both 

the vertical line and horizontal line tests. 

  

If the function f(x) is one-to-one, it will have an inverse function which we denote f~!(x). 

Functions that are not one-to-one are called many-to-one. While these functions satisfy the vertical line 

test, they do not satisfy the horizontal line test. At least one y-value has more than one corresponding 

x-value. 

For example, f(z)= 2% fails the horizontal line test, since if 

f(z) =4 then z=—2or2. 

flz) = 22 is therefore many-to-one. 

  

If a function f(z) is many-to-one, it does not have an inverse function. 

PROPERTIES OF THE INVERSE FUNCTION 

If f(x) has an inverse function, this new function: P 

e is denoted f!(z) In general, 
1 

e must satisfy the vertical line test Fl@)# @ 

  

e has a graph which is the reflection of y = f(z) in the line y =z 

o satisfies (fof 1) (x)=x and (f~'of)(x)=ux. 

The function y = x is called the identity function because it is its own 

inverse, and when its inverse is found, (x, y) maps onto itself. 

If (z,y) lieson f, then (y, x) must lie on f~1. 

Geometrically, this is achieved by reflecting the graph of y = f(z) in the line y = x. 

Algebraically, we find the formula for an inverse function by exchanging x and y. 

For example,  f:y=>5x+2 becomes f~':x=>5y+2, 
T —2 

which we rearrange to obtain f~': y = =  



y = f~1(x) is the inverse of y = f(z) as: 

e it is also a function 

e it is the reflection of y = f(z) in the 

=75 line y =x.   

  

If f(z) has an inverse function f~1(z), then: 

The domain of f~! is equal to the range of f. 

The range of f~! is equal to the domain of f. 

Example 12 ) Self Tutor 

  

Consider f: x+— 2z + 3. 

On the same axes, graph f and its inverse function f~!. 

Find f~*(z) using: 

coordinate geometry and the gradient of y = f~!(z) from 

variable interchange. 

Check that (fo f~Y)(z)=(f"tof)(x) =2 

  

f(x) =22+ 3 passes through (0, 3) and (2, 7). 

f~(z) passes through (3,0) and (7, 2). 

If f includes point (a, b) 
then f~1 includes point (b, a). 

  

  
  

  

i . 2-0 1 
e x) has gradient —— = = y=/""(z) has g bk 

5 A — 1 
Its equation is g=0_1 

z—3 2 

_z—-3 

¥== 
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¢ (fof ™) =f(f(2) and ("o f)(x) = fT(f(2) 
  

  

() e 
_a(29) 15 L 
=z _? 

=z 

  

EXERCISE 3F 

1 For each of the following functions f: Wh - 
en graphing f and 

i On the same set of axes, graph y = 2, y = f(x), and on a calculator, choose a 
y= f_l(x)~ scale so that y = x appears 

at 45° to both axes. 

     
il Find f~!(z) using coordinate geometry and the gradient 

of y=f"Y(x) fromi. 

iii Find f~'(z) using variable interchange. 

a frax—3x+1 b f:rn—>z1_2 é 

(/ 
  

2 For each of the following functions f: 

i Find f~l(). 
ii Sketch y = f(z), y=f"'(x), and y=2x on the sameset of axes. 

iii Show that (f~'o f)(z) = (fo f~')(x) =, the identity function. 

3 -2z 
a f:rax—2x+5 b fiax— T   ¢ frx—a+3 

3 Copy the graphs of the following functions and draw the graphs of y =z and y = f~'(z) on 

the same set of axes. In each case, state the domain and range of both f and f~!. 

a C Y PRINTABLE 
GRAPHS 

y=f(x) 

    

  

  
4 Given f(x)=2x—5, find (f~!)~!(z). What do you notice?
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Show that the function y =3 —z is its own inverse. 

    

      
    

If a function is its 

own inverse, we 

say the function is 

self-inverse. 

Which of the following functions have inverses? Where an inverse exists, write down the inverse 

function. 

a {(1,2),(2,4), (3,5)} b {(-1,3),(0,2), (1, 3)} 

¢ {(2,1),(=1,0),(0,2), (1, 3)} d {(-1,-1),(0,0), (1, 1)} 

If the one-to-one function H(x) has domain {z | —2 < 2 < 3}, find the range of its inverse 

H (). 

Sketch the graph of f: z+ 2® and its inverse function f~!(z). 

Given f(z)= l, 2z # 0, show that f is self-inverse. 
xT 

The horizontal line test says: For a function to have an inverse function, no horizontal line can 

cut its graph more than once. 

a Explain why this is a valid test for the existence of an inverse function. 

b Which of the following functions have an inverse function? 

ii 

   
Explain why f: x+ 2% —4 does not have an inverse. 

Consider f: x> 22, 2 <0. 

a Find f~!(x). 

b Sketch y = f(z), y=u=, and y = f~!(x) on the same set of axes. 

  Consider the functions f: z+—2x+5 and g: z+— 8- z 

a Find g~ '(z). b Hence solve g(z) = —1. 

¢ Show that f~1(—3) —g~1(6) =0. d Find 2 such that (fog~!)(z)=9. 

Given f: x> 2z and g: 2+ 4z — 3, show that (f~Log™1)(z) = (go f)~ (a). 

3o 738, x#3 by:   Find the inverse of f: x+— 

a referring to its graph b using algebra.
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16 a B is the image of A under a reflection in the line y = z. 

If Ais (z, f(x)), find the coordinates of B. 

b By substituting your result from a into y = f~!(x), 

show that f~!(f(z)) = . 

¢ Using a similar method, show that f(f~!(z)) = x. 

  

G I ABSOLUTE VALUE FUNCTIONS 
The absolute value or modulus of a real number z is its distance from 0 on the number line. 

We write the absolute value of x as |z |. 

Because the absolute value is a distance, it cannot be negative. 

o If >0, |z|=u=. o If 2<0, [z]|=—=x 

<—‘—I—> <—‘—I—> 

0 x T 0 

For example: |[7|=7 and |—5]=5. 

+-—5——>————— T —> 
- l | I . 

-5 0 7 
  

This leads us to the algebraic definition: 

T if >0 
The absolute value of z is |z | = { iz <0 

—z @ ! 

    
    

  

The relation y = |z| is in fact a function. 

We call it the absolute value function, and it y=Iz| 

has the graph shown. This branch This branch 

is y=—z, ©<0. is y=a, x>0 

THE GRAPH y = |f () | 

The absolute value of the function f(z) is |f(z)|= { _ 

To obtain the graph of y = | f(x)| from the graph of y = f(x): 

e Keep the graph for f(z) > 0. 

o Reflect the graph in the z-axis for f(z) <0, discarding what was there. 

e Points on the z-axis are unchanged.
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| Example 13 | O R (T 

Draw the graph of f(z) = 3z(z —2) and on the same set of axes draw 

the graph of y =| f(z)|. 

  

  

    

     

  

    
The graph of y= f(z) is 

unchanged for f(z) >0 and 
reflected in the x-axis for f(x) <O0. 

  

      
EXERCISE 3G 

1 On the same set of axes draw the graphs of: 

a y=2r—4 and y=1[2z—4]| b y=5-3z and y=|5-3z]| 

2 Copy the following graphs for y = f(x) and on the same set of axes draw the graph of y = | f(z) |: 

b 

   
3 On the same set of axes, draw the graphs of: 

a y=z(x+2) and y=|z(x+2)| 

by 2?4+ 62 -8 and y=|—a2%+ 6z —8|.       

4 On the same set of axes, draw the graphs of: 

a y=E and y = 3 
T x      
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THEORY OF KNOWLEDGE 

The notation and terminology of mathematics has rules which tell us how to construct expressions 

or mathematical “sentences”. This allows us to communicate mathematical ideas in a written form. 

For example, the expression “1+ 1 =2 tells us that “one added to one is equal to two”. 

1 What does it mean for something to be a “language”? 

2 Does mathematics have a “grammar” or syntax in the same sense as the English language? 

In computer science, Backus-Naur form (BNF) is commonly used to define the syntax of 

programming languages. BNF can also be used to describe the rules of non-programming related 

languages. 

3 Research how BNF works and use it to define the syntax of mathematical function notation. 

4 Mathematical expressions can also be represented with diagrams such as abstract syntax 

trees and syntax (railroad) diagrams. Which form is more efficient in conveying its 

information? Which form is more useful? 

The fact that something is grammatically correct does not make it logically true. 

For example, consider the grammatically correct but illogical English sentence: “The sun is cold.” 

5 The syntax of a language refers to its structure and rules. The semantics of a language 

is all about is meaning. 

a Why is it important to distinguish between these two concepts? 

b In mathematics, is one more important than the other? 

REVIEW SET 3A 

1 For each graph, state: 

i the domain ii the range iili whether the graph shows a function. 

a AY b y 

2 
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2 If f(z)=2z—2? find: 

  

  

  

  

  

  

  

      
                          

a f(2) b f(=3) < f(=3) 
3 The graph of y = f(x) is shown alongside. Ay 

a Find: 

i f(=3) i f(2) 4 
b Find the value of = such that f(x) = 4. y=[(x) 

— Z 
- 7 > 

Y 

4 Suppose f(z) =ax+0b where a and b are constants. If f(1) =7 and f(3) = —5, find a   
and b. 

5 Given h(z)=7— 3z, find: 

a h(2z—1) in simplest form b such that h(2z —1) = —2. 
  

6 This graph shows the noise level at a stadium       Noise level (N decibels) 
  

during a football match. 
  Find the domain and range of the function. 
  

  

  

  

    
0 1               %0 40 60       

7 Consider f(z) = =2 
ZEZ. 

a For what value of z is f(x) undefined? b Sketch the function using technology. 

¢ State the domain and range of the function. 

8 Consider f(z)=2? and g(z) =1 —62. 

a Show that f(-3) = g(fé). b Find x such that g(z) = f(5). 

9 Find the domain and range of: 

a y=vr+4 b y=—(1-2)2+1 ¢ y=222-3z+1 

10 Determine the equation of the reciprocal functions: 

J an 

-12,-5 v 

fi \(\‘ | 

11 Sketch a rational function with domain {x | z # 4}, range {y |y # —1}, and 

o o = S . 
sign diagram <—|——>1 - @ 
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4z +1 

2—z’ 

Find the equations of the asymptotes. 

12 Consider the function f: z —   

b State the domain and range of the function. 

¢ Draw a sign diagram of the function. Hence discuss the behaviour of the function as it 

approaches its asymptotes. 

d Find the axes intercepts. 

e Sketch the function. 

13 If f(z)=2z—3 and g(z) =22 +2, find in simplest form: 

a (fog)(x) b (90 f)(x) ¢ (fo)®) 
14 Suppose f(z) =2z —5 and g(z) =3z + 1. 

a Find (fog)(z). b Solve (fog)(z)= f(z+3). 

15 If f(z)=1-2z and g(z) =./z, find in simplest form: 

a (fog)(@) b (g0 f)(=) ¢ (g09)(81) 
16 If f(z)=av+b, f(2)=1, and f~(3) =4, find a and b. 

17 Copy the following graphs and draw the inverse function on the same set of axes: 

a y b Yy 

ot
 

18 Find f~!(x) given that f(z) is: 

  

  

  

  

  

  

  

  

    
  

                          

  

a dz+2 b 252 
4 

19 Given f: z—3z+6 and h: z— % show that (f~oh 1)(z) = (ho f)~ (). 

20 The graph of the function f(z) = —222, 0< 2 <2 Ay 

is shown alongside. 2 

a Sketch the graph of y = f~!(z). 

b State the range of f~ . 9 1 1 
- > 

¢ Solve: (L,—3) 

i f@) =3 i @) =1 
y=f(z 

2 V) 
21 Show that f: x> 2% 751, x #5 is its own inverse by: P 

a referring to its graph b using algebra. 

22 If f: 2~ /x and g: z+— 3+, find: 

a [Tl xg7'() b (fog)~'(2).
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23 Draw on the same set of axes: 

a y=-—2"-20+3 and y=|-22—22+3 

2 
b y=—-= and y:‘fz 

X T   

REVIEW SET 3B 

1 State the domain and range of each function: 

   
2 If g(z)=2%— 3z, find in simplest form: 

a g(z+1) b g(4z) 

3 For each of the following graphs, determine: 

i the domain and range i the x and y-intercepts iii whether it is a function. 

  

& Use algebraic methods to determine whether these relations are functions: 

  

a z+2y=10 b z+y2=10 

_3z—1 
5 Suppose f(z) = —— 

a Evaluate: 

i f(-1) 0) i £(5) 
b Find a value of 2 such that f(x) does not exist. 

¢ Find f(x—1) in simplest form. 

d Find z if f(z) =4. 

6 Given f(z)=a2%+3, find: 

a f(=3) bz such that f(z) = 4. 

7 State the domain and range of: 

a f(z)=10+—> b f(@)=vTET 
2z — 1 
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12 

13 

14 

15 

16 

17 

a Use technology to help sketch the graph of the relation y =+/9 — . 

b Determine whether the relation is a function. 

¢ Find the domain and range of the relation. 

Suppose f(z) = az? +bx +c. Find a, b, and cif f(0) =5, f(—2)=21, and f(3)= —4. 

Use technology to sketch y = 2® — 422 + 2, —1 < < 4. Include the points at the ends of 

the domain, and any turning points. Hence state the range of the function. 

Draw a sign diagram for: 

    

2z —5 b 8= 

x—4 x+1 

. 3 
For the funct =—-14+—": or the function f(z) e 

Find the equations of the asymptotes. b State the domain and range. 

Find the axes intercepts. 

Discuss the behaviour of the function as it approaches its asymptotes. 

Sketch the graph of the function. ® 
O
 an 
o
 

Given f(z)=3—2? and g(z) =2v — 1, find in simplest form: 

a (fog)(x) b (g0 f)(x) ¢ (fof)(=2) 

Suppose  f(x) = iz and g(z) = 2% —4a +3. Find (fog)(z) and state its domain and 

range. * 

Suppose f(z) =3z +5 and g(z) = 22% —z. 

a Find in simplest form: 

i (fog)(x) i (gof)(x) 
b Hence solve 3(fog)(z) = (go f)(x). 

Copy the following graphs and draw the graph of each inverse function on the same set of axes: 

a Y b 

  

Find the inverse function f~!(z) for: 

a f(z)=T7—4x b f(z) = 
3+ 2z 
  

5 

Consider f: x+— 2z —T. 

a On the same set of axes graph y =z, y = f(z), and y = f~!(x). 

b Find f~!'(z) using variable interchange. 

¢ Show that (fo f=')(z) = (f'o f)(x) =2, the identity function.
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Given f: x—5x—2 and h: xH%, show that (f~'oh=)(x) = (ho f)~(z). 

Consider the functions f(z) =3z +1 and g(z) = 2, 
x 

a Find (go f)(z). 

b Given (go f)(z) = —4, solve for z. 

¢ Let h(z)=(go f)(z), = #—1. 

i Write down the equations of the asymptotes of h(z). 

ii Sketch the graph of h(z) for —3 <z < 2. 

ili State the range of h(x) for the domain —3 <z < 2. 

Given f(z)=2z+11 and g(z) =22, find (go f~1)(3). 

  

  

The function f(z) = IT+3 has asymptotes x = —1 and y = 2. g 

a Find @ and b. b Find the domain and range of f~!(z). 

If f:x—2x+1 and g: met;, find: 

a (fog)(z) b g '(2). 
Copy the graph and draw the graph of y = | f(z)| on the same set of axes: 

a b Y 
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OPENING PROBLEM 

In our study of quadratic functions, we saw that the completed square form y = (z — h)? +k was 

extremely useful in identifying the vertex (h, k). 

Things to think about: 

a What transformation maps the graph y = z? onto the graph y = (z — h)? + k? 

b Ifwelet f(z)=a2 what functionis f(x —h)+k? 

¢ In general terms, what transformation maps y = f(z) onto y = f(z — h) + k? 

In this Chapter we perform transformations of graphs to produce the graph of a related function. 

The transformations of y = f(x) we consider include: 

e translations y= f(z)+b and y= f(z—a) 

e stretches y =pf(z), p>0 and y= f(gz), ¢>0 

e reflections y = —f(z) and y = f(—x) 

e combinations of these transformations. 

If f(z)=2a? then f(x—h)+k=(v—h)?+k 

The graph y = (z — h)? + k has the same shape as 

y =z 

  

It can be produced from y = z? by a translation 

h units to the right and % units upwards. 

This shifts the vertex of the parabola from the origin 

0(0, 0) to (h, k). 

  

INVESTIGATION 1 

Our observations of quadratics suggest that y = f(z) can be transformed into y = f(z —a)+b 

by a translation. In this Investigation we test this theory with other functions. 

What to do: 

— 3 1 Let f(z) =2’ CEARHING 

  

a Write down: 

i flx)+2 it f(zr)-3 i f(z)+6 

Graph y = f(z) and the other three functions on the same set of axes. 

Record your observations. 

b Write down: 

i fz-2) il f(z+3) i f(zr—06) 

Graph y = f(z) and the other three functions on the same set of axes. Record your 

observations.
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¢ Write down: 

i fa—-1)+3 i f(z+2)+1 i f(x—3)—4 

Graph y = f(z) and the other three functions on the same set of axes. 

2 Repeat 1 for the function y = l 
x 

3 Describe the transformation which maps y = f(z) onto: 

a y=f(z)+b b y=f(z—a) c y=f(z—a)+b 

& Do any of these transformations change the shape of the graph? 

From the Investigation you should have found: 

e For y= f(z)+0b, the effect of b is to translate the graph vertically through b units. 

> If b>0 it moves upwards. > If b <0 it moves downwards. 

e For y= f(xz —a), the effect of a is to translate the graph horizontally through a units. 

> If a >0 it moves to the right. > If a <0 it moves to the left. 

e For y= f(z—a)+b, the graph is translated horizontally a units and vertically b units. 

We say it is translated by the vector (Z’) 

  

  

  

  

  

  

  

  

      
  

  

Consider the graph of y = f(z) alongside. Ay 

On separate axes, draw the graphs of: 3 

a y=f(z)+2 b y=f(z+4) 

3 z 

-3 y=I(2) 
v 

a The graph of y = f(z)+2 is found by translating Ay 
  

y = f(x) 2 units upwards. 
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b The graph of y = f(z+4) is found by translating Ay 
y = f(x) 4 units to the left. 

  

  

  

  

  

=Y
 

  

                          

  

y=7z) 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

                        

  

  

EXERCISE 4A 

1 Consider the graph of y = f(z) alongside. Ay 

On separate axes, draw the graphs of: 5 

a y=f(z)+5 b y=f(z—-3) 

¢ y=f(x—3)+5 

e " 

2 Ay Consider the graph of y = g(z) alongside. 

3 On separate axes, draw the graphs of: 

y=g(x) a y=g(x)-3 b y=g(z+1) 

c y=g(z+1)-3   

  

  

  
a2 S 

                                v 
  

3 Write g(z) in terms of f(z): 
  

  

  

  

  

  

|Y
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10 

1 

Find the equation of the resulting graph g(z) when: 

a f(z) =2z +3 is translated 4 units downwards 

b f(z) =3z —4 is translated 2 units to the left 

¢ f(z) = —2%+ 5z — 7 is translated 3 units upwards 

  d f(z) =22 +42 — 1 is translated 5 units to the right. 

For each of the following functions f, sketch y = f(z), y = f(z)+1, and y = f(z) —2 on the 

same set of axes. 

a f(z)=a? b f(z) =2 ¢ fl@)== d f(z)=(x—1)*+2 

For each of the following functions f, sketch y = f(z), y= f(z—1), and y = f(z+2) on the 
same set of axes. 

a fz)=2? b flz) =2 ¢ fl@) == d fl@)=(z—12+2 

For each of the following functions f, sketch y = f(z), y = f(z—2)+3, and y = f(z+1)—4 

on the same set of axes. 

a fla)=a? b f(z) =a? ¢ fl@)=1 d f@)=(z—12+2 

    

The point (—2, —5) lies on the graph of y = f(z). Find the coordinates of the corresponding 

point on the graph of g(z) = f(z —3) — 4. 

Suppose the graph of y = f(z) has z-intercepts —3 and 4, and y-intercept 2. What can you say 

about the axes intercepts of: 

a gla) = f(@) -3 b h(z) = flz—1) ¢ j(@)=fle+2) -4 
The graph of f(z) = 2? — 2z + 2 is translated 3 units to the right to form g(z). Find g(z) in 

the form g(x) = az® + bz + c. 

Suppose f(z) =a? is transformed to g(z) = (z — 3)% + 2. 

a Find the images of the following points on f(z): 

i (0,0) il (=3,9) i (2, 4) 

b Find the points on f(z) which correspond to the following points on g(z): 

i (1,6) il (=2,27) i (13, 4%) 

LN sTReTcHEs 
In this Section we study how a function can be manipulated to stretch its graph. 

We will consider stretches in both the horizontal and vertical directions. 

A stretch can also 

be called a dilation. 
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In our study of quadratic functions, we saw that the coefficient a of 22 controls the width of the parabola. 

In the case of f(z) = 22, 

notice that f(2z) = (2z)? = 42 

and 4f(z) = 4a* 

  

  

  

  

  

  

  

  

            

  

                      
o In what ways could y = 22 be stretched to form y = 4z2? 

e Will a transformation of the form pf(z), p > 0 always be equivalent to a transformation of 

the form f(gz), ¢ > 0? 

INVESTIGATION 2 
  

In this Investigation we consider transformations of the form pf(z), p >0, and f(qz), ¢ > 0. 

What to do: 

1 Let f(z)=z+2. GRAPHING 

a Find, in simplest form: 

i 3f(z) i 1f(z) ili 5f(z) 

b Graph all four functions on the same set of axes. 

n 

2 Let 

Which point is invariant under a transformation of the form 

pf(z), p>0? An invariant point 
does not move. 

Copy and complete: 

For the transformation y = p f(z), each point becomes 

...... times its previous distance from the z-axis. 

  

fl@)=z+2. 

Find, in simplest form: 

i f(2z) i f(32) ili f(4z) 

Graph all four functions on the same set of axes. 

Which point is invariant under a transformation of the form f(qz), ¢ > 0? 

Copy and complete: 

For the transformation y = f(gz), each point becomes ...... times its previous 

distance from the y-axis.
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From the Investigation you should have found: 

o y=pf(z), p>0 isa vertical stretch of y = f(x) with scale factor p and invariant z-axis. 

> Each point becomes p times its previous distance from the z-axis. 

> If p>1, points move further away from the z-axis. 

» If 0<p<1, points move closer to the z-axis. 

e y = f(gz), g > 0 is a horizontal stretch of y = f(x) with scale factor L and invariant 
: q 

y-axis. 
. 1. . . . . 

> Each point becomes — times its previous distance from the y-axis. 
q 

» If ¢ > 1, points move closer to the y-axis. 

» If 0<g¢g <1, points move further away from the y-axis. 

  

  

  

  

  

  

  

      

Example 2 o) Self Tutor 

Consider the graph of y = f(z) alongside. Ay 

On separate axes, draw the graphs of: 3 

a y=3f(=) b y=f(2z) 

M ¥ 

y=f(z) 

Y                   
  

  

  

a The graph of y = 3f(z) is a vertical stretch of 

y = f(x) with scale factor 3. 
  

  

  

  

    
  

  

  

                    

  

  

  

b The graph of y = f(2z) is a horizontal stretch 

of y= f(z) with scale factor 3.   
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EXERCISE 4B 

1 Consider the graph of y = f(z) alongside. Ay 

On separate axes, draw the graphs of: 6 

a y=2f(z) b y=[f(3z) 

PRI;:JS:LE y=f(z) 

b 3 % 

y 

2 Consider the graph of y = h(z) alongside. 
  

On separate axes, draw the graphs of: 

_1 —n(Z a y=gh(z) b y=nh ( 2) 

  

  

  

    

        
    

  

   
If scale factor > 1, 

  

  

  

  

  

        

  

                
~ % the graph is elongated. ‘ 

If 0 < scale factor < 1, = 

the graph is compressed. & 

G 

3 Write g(x) in terms of f(z): 

a Ay b 
    

  
2 S   

    

    

  

  
  

    

    

    

  

                                                

  

    

4 A linear function with gradient m is vertically stretched with scale factor ¢. Find the gradient of the 

resulting line. 

5 For each of the following functions f, sketch y = f(z), y =2f(z), and y =3 f(z) on the same 

set of axes: 

a flx)=a—1 b f(z) =22 

¢ flz)=q° d fl@)=-
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10 

1 

12 

13 

14 

15 

For each of the following functions f, sketch y = f(z), y = 3 f(z), and y = 1 f(z) on the 

same set of axes: 

a fl@)=z-1 b f(z) =22 ¢ fla)=a? d fl@)=- 

Sketch, on the same set of axes, the graphs of y = f(z) and y = f(2z) for: 

a y=az? b y=(z—1)?° ¢ y=(z+3)?2 

Sketch, on the same set of axes, the graphs of y = f(z) and y = f(§) for: 

  a y=2a? b y=2x ¢ y=(z+2)> 

Suppose f and g are functions such that g(z) = f(5z). 

a Given that (10, 25) lies on y = f(x), find the coordinates of the corresponding point on 

y = g(). 
b Given that (—5, —15) lieson y = g(x), find the coordinates of the corresponding point on 

y = f(z). 

Find the equation of the resulting graph g(z) when: 

a f(z) =22 +2 is vertically stretched with scale factor 2 

b f(z) =5— 3z is horizontally stretched with scale factor 3 

  ¢ f(z)=a°+8a? —2 is vertically dilated with scale factor X 

d  f(z) =22 + 2 — 3 is horizontally dilated with scale factor 1. 

Graph on the same set of axes y = 2%, y =322, and y=3(z+ 1) — 2. 

Describe the combination of transformations which transform y =2 to y=3(z +1)% — 2. 

Graph on the same set of axes y = 2%, y = 327, and y=3(z+1)2+3. 

Describe the combination of transformations which transform y =2 to y = %(z +1)2+3. 

Graph on the same set of axes y =22, y =222, and y=2(z— £)? + 1 

Describe the combination of transformations which transform y =a? to y=2(z — 2)2+ 1. 

Describe the combination of transformations which transform y =% to y =2(x +1)? — 3. 

Hence sketch y = 2(z + 1)? — 3. 

Suppose [ and g are functions such that g(z) = 3 f(2z). 

a What transformations are needed to map y = f(z) onto y = g(x)? 

b Find the image of each of these points on y = f(z): 

i (3,-5) il (1,2) iii (=2, 1) 

¢ Find the point on y = f(z) which maps onto the image point: 

i (21 i (-3,2) i (-7, 3)
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IR O R (T 

b 

< 

  
16 Write, in the form y = 

o 
n 
O
 o
 

The function g(z) results when y 

followed by a translation of < }2 ) . 

  

L is transformed by a vertical stretch with scale factor 2, 
x 

Write an expression for g(z) in the form g(z) =   
  

Find the asymptotes of y = g(x). 

Sketch y = g(z). 

Under a vertical stretch with scale factor 2, f(z) becomes 2 f(z). 

L becomes 2(1) = Z 
x x x 

Under a translation of ( 32 ) , f(z) becomes f(z —3)—2. 

2 2 
  

      
     
  

  

  

— becomes =% 
D z—3 

So, y== b R 0, y = - becomes g(z) = z_3 g(x) is a rational function ) 

_2-2@-3) SR 
=T a=3% linear * @ 

_ —2z+8 N\ 
T z-3 

The asymptotes of y = 1 are x=0 and y=0. 
x 

These are unchanged by the stretch, and shifted < 732 ) by the translation. 

the vertical asymptote is « = 3 and the horizontal asymptote is y = —2. 

  

  
ar+b . 1 . 

, the function that results when y = = is transformed by: 
cr+d T 
  

a vertical dilation with scale factor % 

a horizontal dilation with scale factor 3 

a horizontal translation of —3 

a vertical translation of 4.
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17 The function g(z) results when y = L is transformed by a vertical stretch with scale factor 3, 
x 

followed by a translation of ( _11 ) . 

axr +b 
Write an expression for g(x) in the form g(x) = rt 

cT 

  

Find the asymptotes of y = g(x). 

State the domain and range of g(z). 

Sketch y = g(z). 

For a vertical stretch with scale factor p, each point on the function is moved vertically so it is 

p times as far from the z-axis. 

Q 
an 
O
 o
 

1 Using this definition of a vertical stretch, does it make sense to talk about negative values of p? 

2 If a function is transformed from f(z) to — f(x), what transformation has actually occurred? 

3 What combinations of transformations would transform f(z) to —2 f(z)? 

4 What can we say about y = f(qz) for: 

a g=-1 b ¢<0, ¢g#-1? 

R REFLECTIONS 
INVESTIGATION 3   

In this Investigation we consider reflections with the forms y = —f(z) and y = f(—x). 

What to do: 
GRAPHING 

1 Consider f(z) =2z +3. PACKAGE 

a Find in simplest form: 

i —f(2) i f(-=) 
b Graph y= f(z), y=—f(z), and y = f(—=x) on the same set of axes. 

2 Consider f(z)=a%+1. 

a Find in simplest form: 

i —f(z) i f(-2) 
b Graph y = f(z), y=—f(z), and y = f(—x) on the same set of axes. 

3 What transformation moves: 

a y=f(z) to y=—f(z) b y=f(z) to y=f(-2)? 

From the Investigation you should have discovered that: 

e For y=—f(z), wereflect y= f(z) in the z-axis. 

e For y= f(—z), wereflect y = f(z) in the y-axis.
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IO 
Consider the graph of y = f(z) alongside. 

  

  

  

On separate axes, draw the graphs of: 

a y=—f() b y=f(-x) 
  

  

  

  

  

  

  

                          

  

a The graph of y = —f(z) is found by b The graph of y = f(—z) is found by 

    

    

    

    

    

  

    

    

      

      

            

  

                                        
      
  

  

  

  

  

  

  

  

  

reflecting y = f(z) in the z-axis. reflecting y = f(z) in the y-axis. 

= fi(— Ay y=J(-%) ' 

-+ 73' - 

Y 

EXERCISE 4C 

1 Consider the graph of y = f(z) alongside. YA 

On separate axes, draw the graphs of: 

a y=—f() b y=f(-2) v=1o | s 
PRINTABLE 

GRIDS 

- 3 5 E 

—3 
v                         

2 Copy the following graphs for y = f(x) and sketch the graphs of y = —f(z) on the same axes. 

A P
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3 

10 

1 

Copy the following graphs of y = f(z) and sketch the graphs of y = f(—x) on the same axes. 

a Yy b Y c 

  

On the same set of axes, sketch the graphs of y = f(z) and y= —f(z) for: 

  
  

a f(z)=3z b f(z)=2? ¢ f(z)=2%-2 d f(z)=2(z+1)? 

a Find f(—=z) for: 

i flz)=2z+1 i flz)=2?+2z+1 i f(z) =23 

b Graph y = f(z) and y = f(—z) for: 

i flz)=2z+1 i flz)=2>+2z+1 i f(z) =a®     
The function f(z) = z* — 223 — 32% 4+ 5z — 7 is reflected in the y-axis to g(z). Find g(z). 

The function y = f(z) is transformed to g(z) = —f(z). 

a Find the image points on y = g(z) corresponding to the following points on y = f(z): 

i (3,0) i (2,-1) i (-3,2) 

b Find the points on y = f(z) which are transformed to the following points on y = g(z): 

i (7,-1) ii (=5,0) i (-3, -2) 

The function y = f(z) is transformed to h(z) = f(—z). 

a Find the image points on y = h(x) for the following points on y = f(z): 

i (2,-1) i (0,3) i (-1,2) 

b Find the points on y = f(z) corresponding to the following points on y = h(z): 

i (5, —4) ii (0, 3) il (2, 3) 

A function f(z) is transformed to the function g(z) = —f(—z). 

What combination of transformations has taken place? 

b If (3, —7) lieson y = f(x), find the transformed point on y = g(z). 

¢ Find the point on f(z) that transforms to the point (—5, —1). 

Let f(z)=z+2. 

a Describe the transformation which transforms y = f(z) to y = —f(x). 

b Describe the transformation which transforms y = —f(z) to y = —3f(z). 

¢ Hence draw the graphs of y = f(z), y = —f(z), and y = —3f(x) on the same set of axes. 

Let f(z)=(z—1)* —4. 

a Describe the transformation which transforms y = f(z) to y = f(—=z). 

b Describe the transformation which transforms y = f(—z) to y = f(—3x). 

¢ Hence draw the graphs of y = f(z), y = f(—z), and y = f(féz) on the same set of axes.
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12 Graph on the same set of axes y = 2%, y=—2?, and y=—(z+2)? +3. 

  

  

Describe the combination of transformations which transform y =22 to y= —(z +2)? + 3. 

1 1 1 
13 Graph on the same set of axes y=—, y=—=, y=— + 2. 

x x r—3 

Describe the combination of transformations which transform y = L to y=— ! 3 + 2. 
x €T — 

[P Ne Vi (o], 

  

For which combinations of two transformationson y = f(z) is the order in which the transformations 

are performed: 

e important e not important? 

A summary of all the transformations is given in the printable concept map. CONCEPT MAP 

e ) Self Tutor 

  

Consider f(z) = %x + 1. On separate sets of axes graph: 

  

a y=f(z) and y=flz+2) b y=/(z) and y=f(z) +2 
¢ y=f(z) and y=2f(x d y=f(z) and y=—f(z) 

a b 
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EXERCISE 4D 

1 Consider f(z)=x?—1. 

a Graph y = f(z) and state its axes intercepts. 

b Graph each function and describe the transformation which has occurred: 

i y=[f(z)+3 it y=f(z-1) il y=2f(x) v y=—f(z) 

2 In each graph, f(z) is transformed to g(x) using a single transformation. 

i Describe the transformation. il Write g(z) in terms of f(z). 

b +y y=f(x) 

  

      y=g(z) 

y=/f(z) 

3 For the graph of y = f(z) given, sketch the graph of: 

a y=2f(z) b y=3f(z) 

¢ y=flz+2) d y=f(2) 

e y=f(32) 

  

4 For the graph of y = g(z) given, sketch the graph 

of: 

a y=g(x)+2 b y=—g(z) 
¢ y=g(-=) d y=glz+1) 

  

5 For the graph of y = h(x) given, sketch the graph of: 

a y=h(x)+1 b y=1in(z) 

¢ y=h(-z) d y=h(§) 
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6 Consider the function f(z) = (z+1)(z — ) where 3> 0. 
A sketch of the function is shown alongside. 

a Determine the axes intercepts of the graph of y = f(z). 

b Sketch the graphs of f(z) and g(z) = —f(z—1) on 

the same set of axes. 

¢ Find and label the axes intercepts of y = g(z). 

  

Example 6 l1>)) L AR (T 

Consider a function f(x). 

a What function results if y = f(z) is reflected in the z-axis, then translated through ( 5’1 ), 

then stretched vertically with scale factor 2? 

b Fully describe the transformations which map y = f(z) onto y=3f(2(x —1)) — 2. 

  

  

reflection translation vertical stretch 
. . =l 
in z-axis scale factor 2 

a f(z) > —f(2) > —fle=3)-1 >2(—f(z-3)-1) 

The resulting function is —2 f(z — 3) — 2. 

vertical stretch horizontal stretch translation < 12 ) 

scale factor 3 scale factor % - 

b f(z) > 3 f(z) > 3 f(2x) > 3f(2@x—-1))—2         
7 Consider a function f(z). Find the function which results if y = f(x) is: 

a translated through < :11 ) then reflected in the y-axis 

b reflected in the y-axis then translated through ( :11 ) 

¢ translated through < 1 ) then stretched vertically with scale factor % 

d stretched vertically with scale factor % then translated through < _12 ) 

8 Fully describe the transformations which map y = f(x) onto: 

a y=—fz+1)+3 b oy=f(32)-7 

¢ y=[fB-1)) d y=-1+2f(3(z—4) 
e y=5+2f@3x—1)) fy=—4f3(@=+3)-1
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9 The graph of y = 22 is transformed into y = a(x — h)? + k using three transformations: 

e a vertical stretch with invariant z-axis 

. . h 
e a translation with vector & 

e a reflection in the z-axis. 

Discuss what you know about: 

a the transformations b the function. 

REVIEW SET 4A 

1 For the graph of y = f(z), sketch graphs of: 

a y=f(-2) b y=—f(z) 
c y=f(z+2) d y=f(z)+2 

  

(27 _1) 

2 Consider the function f:z +— 22 
On the same set of axes, graph y = f(z), y=3f(z), and y=3f(z —1)+2. 

3 Find the equation of the resulting graph g(z) when: 

a f(z) =4z — 7 is translated 3 units downwards 

b f(z) =22 +6 is vertically stretched with scale factor 5 

¢ f(z) =7—3x is translated 4 units to the left 

d f(z) =222 —x +4 is horizontally stretched with scale factor 3 

e f(z)=21* is reflected in the y-axis. 

h Sketch the graph of f(z) = 2%+ 1, and on the same set of axes sketch the graph of: 

a y=—f(z) b y=f(22) ¢ y=flz)+3 

5 The function f(z) has domain {z | -2 <z <3} andrange {y|—-1<y<T7} 

Find the domain and range of g(x) = f(z +3) —4. Explain your answers. 

6 The graph of the function f(z) = (z+1)?+4 is translated 2 units to the right and 4 units up. 

a Find the function g(z) corresponding to the translated graph. 

b State the range of: 

i f(z) i g(z) 

7 The graph of f(z) =3z% —x+4 is translated by the vector ( 3 ) . Write the equation of 

the image in the form g(z) = az? + bz + c.
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a Find the equation of the line that results when the line f(z) = 3z + 2 is translated: 

i 2 units to the left ii 6 units upwards. 

b Show that when the linear function f(z) =ax+b, a > 0 is translated k units to the left, 

the resulting line is the same as when f(z) is translated ak units upwards. 

Consider a function f(z). Find the function which results if y = f(z) is: 

a reflected in the z-axis then translated through ( ;2> 

b translated through ( :11 ) then vertically stretched with scale factor 2. 

Suppose the graph of y = f(x) has z-intercepts —5 and 1, and y-intercept —3. What can you 

say about the axes intercepts of: 

a y=f+4) b y=3f() « y=1(%) d y=—f(z)? 

The function g(z) results when y = L s transformed by a translation through (_21> 
T 

followed by a reflection in the y-axis. 

  a Write an expression for g(z) in the form g(z) = 
  

b Find the asymptotes of y = g(z). 

¢ State the domain and range of g(z). 

d Sketch y = g(z). 

Graph on the same set of axes y =22, y=12?, and y=1(z —2)? - 1L 

Describe the combination of transformations which transform y = 22 to y = %(z —-2)2 -1 

  REVIEW SET 4B 

2 

  

Consider the graph of y = f(z) alongside. Ay 

On separate axes, draw the graphs of: 

a y=f(z-1) b y = f(2x) 

  

  

  

  

  

¢ y=J@)+3  d y=2/() - 
e y=f(-a) ty=—f) 

PRINTABLE 
GRIDS 

  

  

                          
Find the equation of the resulting graph g(z) when: 

a f(x) =2 -3z is reflected in the z-axis 

b f(z) =14 —z is translated 2 units upwards 

¢ f(z) =3z +2 is horizontally stretched with scale factor 4.
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10 

Consider the function f: z + 22. On the same set of axes, graph y = f(z), y = 2f(z), 

and y=2f(z+2)—3. 

The graph of f(z) = 22 is transformed to the graph 

of g(x) by areflection and a translation as illustrated. 

Find the formula for g(z) in the form 

g(z) = az® + bz +c. 

Given the graph of y = f(z), sketch graphs of: 

a y=f(-x) b y=flz+1) 
¢ y=f(z)-3. 

  

Sketch the graph of f(z) = —z2, and on the same set of axes sketch the graph of: 

a y=f(-x) b y=—/(z) ¢ y=/f(2) d y=f(z-2) 

The graph of a cubic function y = f(z) is shown 
alongside. 

a Sketch the graph of g(z) = —f(z —1). 

b State the coordinates of the turning points of 

y =g(z). 

  

The graph of f(z) = —2z? +x + 2 is translated by the vector ( _12 ) 

Write the equation of the image in the form y = aa? + bz + c. 

The graph of y = f(z) is shown alongside. 

The z-axis is a tangent to f(z) at = =a and 

f(z) cuts the z-axis at = = b. 

On the same diagram, sketch the graph of 

y=f(zr—c) where 0 <c<b—a. 

Indicate the z-intercepts of y = f(z — ¢). 

  

The point (—1, 6) lies on the graph of y = f(z). Find the corresponding point on the graph 

of y=1f(z—2)+3. 

Fully describe the transformations which map y = f(z) onto: 

a y=2f(zx+1)+3 b y=—/f(32)-6 ¢ y=31f(-z)+2
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12 a Graph on the same set of axes yzl, y=—l, y=—i, and y=—;—2 
T @ 2z 2(z+ 1) 

b Describe the combination of transformations which transform y = L into 
x 

[ 1 . 

Y= "2@+y 
ax+b 

¢ Write the resulting function in the form y = 7 and state its domain and range. 
CT + 

  

 



  

Exponential functions 

Contents: A Rational exponents 

B Algebraic expansion and 
factorisation 

Exponential equations 

Exponential functions 

Growth and decay 
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  OPENING PROBLEM 

  

At an antiques fair, Bernard purchases a clock for £500 

and a vase for £400. The clock increases in value by 5% 

each year, and the vase increases in value by 7% each year. 

Things to think about: 

a What is the value of each item 1 year after purchase? 

b Can you write a formula for the value of each item 

t years after purchase? 

  

Which item is more valuable 15 years after purchase? 

d How can we determine when the items are equal in value? 

We have seen previously how exponents are used to indicate when a number is raised to a power. 

  

o 2P=2x2x2 =8 
For a positive integer exponent, the exponent tells us 5 

how many of the base are multiplied together. 21 =2x2 =4 
22=2 =2 

Any non-zero base to the power 0 is defined as 1, to 20 _ 1 

give consistency to the exponent laws. 
27l =1 =1 

For a negative integer exponent, we take the reciprocal L 2 1 i 

of the corresponding positive integer power. 277 = %2 =1 

o3 _ 1 _1 
2X2x%2 8 

In this Chapter we give meaning to exponents which are rational, allowing us to start filling in the 

gaps between the integer exponents. This will allow us to consider exponential functions for which the 

variable appears in an exponent. 

FNNIINNTT RATIONAL EXPONENTS 
The laws of exponents used previously can also be applied to rational exponents, or exponents € Q. 

1 1 1 

For any a >0, notice that a? x a? =a? 2 =a' =a {exponent laws} 

and +/a x \/a=a also. 

1 

+3 

1 1 1 

Likewise, a3 x a? X a* =a' =a 

and Vax Yax Ya=a also. 

By direct comparison, we conclude that az =./a and a 

1 

In general, a® = {/a where {/a reads “the nth root of a” for n € Z*.
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1 

We can now determine that /a™ = (a™)" 
m 

—an 

m 

a™ = Yam for a >0, neZt, mcZ 

      
Write as a single power of 2: 

3 1 
a 2 bfi 

     

EXERCISE 5A 

  

    

1 Write as a single power of 2: 

1 1 
a V2 b — ¢ 2V2 d 42 e — V2 % V2 V2 % 

f2xy2 s = h (v2)? i - [ 
V2 V16 V8 

2 Write as a single power of 3: 

1 1 
a /3 b — ¢ V3 d 3v3 e — V3 7 V3 V3 57 

3 Write in the form a*, where a is a prime number and k is rational: 

a V7 b V27 ¢ V16 d /32 e V49 
f L q 1 h 1 I 1 j 1 

V7 V27 /16 /32 V49 

4 Write in the form z*, where k is rational: 

1 5 1 
a Jz b zyx c 7 d 2?\/z e o 

5 Use your calculator to find, correct to 3 significant figures: 

2 -2 4 5 1 

2 kAT e VB A e S, 
INSTRUCTIONS 

6 Write without rational exponents: 

5 3 7 

32 d m? e z? a 53 b 32 c
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Without using a calculator, write in simplest rational form: 

2 

a 83 b 27 3 
  

-2 
2{( W3 

2 

e 325 

wl
e 

g 9 h 8¢ j 125 

  ) RISATION 
We can use the standard rules of algebra, together with the laws of exponents, to simplify expressions 

containing rational or variable exponents: 

a(b+¢) = ab+ ac 

(a+b)(c+ d) = ac+ ad + be+ bd 

(a+ b)(a—b) = a®> — b* 

(a+ b)% = a® + 2ab+ b? 

(a—b)? = a®> — 2ab+ b? 

  

Example 3 «) Self Tutor 

Expand and simplify: 

  

1 3 1 1 

(R R ) 
1 3 1 1 1 1 1 

=2 2 xz?+x 2x22% —x2 2x3z 2 {each term is multiplied by = 2} 

=gt 4220 — 3271 {adding indices} 

—parg=2 
T 

  
EXERCISE 5B 

1 Simplify: 

1 _1 3 _1 _3 
a x2XxzT 2 b zz2xz 2 ¢ 2?xax ?



Expand and simplify: 

  

  
  

  

  

  

    

  

1 1 1 

22(z% 4+ 222 + 1) 27(2% +1) 2Z(22 + o ?) 

1 3 1 1 

75T 4 2) 37(2—37%) 22 (27 + 222 4+ 32 2) 

277(2% 4 5) 57(52% + 57) v (2 +ax+a?) 
1 1 

353" +54377) x ?(222 — x4 52?) 2%e(2% — 3 — 27 %) 

Example 4 R TR 

Expand and simplify: 

(2% +3)(27 + 1) 

-3)(2% +1) (7" +777)? 
2%+ 2% +3x2°+3 =(T")2 42 x T8 x T7% 4 (77%)2 

14X 2% +3 =74 2x 0+ 7T 
— 72z + 24+ 7721 

Expand and simplify: 

(27 —1)(2* + 3) (3% +2)(3" +5) (5% —2)(5° — 4) 

(27 +3)2 (35— 1) (4" +7)? 

(22 +2)(2% —2) (27 +3)(2° — 3) (@2 +2 %) (2% —a ?) 
2 

(IJ’_;) (71_777:)2 (5_277:)2 

[ COR T2 [ (11104 

Factorise: 
2n+3 + 2m 

2n+3 4 9n 27L+3 +8 23n + 22n 

— 2n23 4 9n — 2n23 +8 — 22n2n + 2271, 

=2"(2*+1) =8(2") +8 =27"(2" +1) 
=2"x9 =8(2" +1) 

Factorise: 
52;5 + 5% 3n+2 4 3n 7n + 73n 

5n+1 -5 6n+2 —6 4n+2 —16 

  22n o 2n+3 2n+1 1 277,71 4n+1 + 22n71



  

Example 6 

Factorise: 

47 —9 

4% —9 
— (21)2 _ 32 

= (2% +3)(2* - 3) 

9% +4(3%) +4 

= (3%)2 4 4(3%) + 4 

= (3" +2)° 

Factorise: 

97 —4 

25 — 4% 

9% +10(3%) 4+ 25 

  

9° +4(3%) + 4 

) Self Tutor 

{compare a® —b* = (a +b)(a — b)} 

{compare a? + 4a + 4} 

{as @®+4a+4=(a+2)?} 

  

47 — 25 
9T _ 4% 

47— 14(2%) + 49 

16— 9° 
47 +6(2%) +9 
257 — 4(57) 4 4 

  

  

  

    

    
  

    

Factorise: 

(29)2 —2v -2 (3%)2+3"—6 4° —7(2%) + 12 

47 +9(27) 4+ 18 4% —2% —20 97 +9(3%) + 14 

9% +4(3%) -5 25% + 5% — 2 49% — 7o+ 412 

Simplify: 

67? 4TL 

3 & 
6’” 6” 4’VL 4" 

— or — — or — 
3’” 3” 67L 6" 

PRI 6\ 219N 4\ " 

= T34, =(%) = Shgn =(3) 

=on =on _om e 
=3 =(3) 

Simplify: 

127 20° 6" 
6" 20 2b 

an 8 o 
207 & 8¢ 

o4k 5+l 5n+1 

oF 5n 5
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€1 TR 

Simplify: 

3n 4 6" b 2m+2 —_om 2m+3 + 2m 
P — S, € - 

B8 22 9 

3n 6™ 2m+2 _om 2m+3 om 

4 ;_L ° am ¢ 9+ 

_ 3" +2m3” R _ ama3 4 om 
3n T om T 9 

_3a+2m _P(4-1) _ 2M(BT) 

3 7y g, 
=1+2" =3 —om 

8 Simplify: 

6 om 2n 4 19n 8|n 4n 

o b < % 
12T _ 3T 7y 19N n+l _ gn 

d 3T - ¢ 61 2n f : 4 . 

5n+1 _5n qn _on _oon 2n—1 

g —— h i — 
5’!2 2’!2 2” 

9 Simplify: 

a 2°(n+1)+2°n—1) b 3"<"T‘1) —3n ("T“) 

(G EXPONENTIAL EQUATIONS 
An exponential equation is an equation in which the unknown occurs as part of the 

index or exponent. 

For example: 2% =8 and 30 x 3 =7 are both exponential equations. 

There are a number of methods we can use to solve exponential equations. These include graphing, using 

technology, and by using logarithms, which we will study in Chapter 6. However, in some cases we 

can solve the equation algebraically. 

If both sides of an exponential equation are written as powers with the same base numbers, 

we can equate indices. 

So, if a* = a* then = = k. 

For example, if 2% =8 then 2% =23 Thus 2 = 3, and this is the only solution.



  

Example 9 

Solve for x: 

27 =16 

2" =16 
2% — 24 

T = 

  

  

[l T IER 

  

  

Solve for x: 

47 =8 

47 =8 
(22)93 — 23 

221‘ — 23 

2x =3 

r=%   
  

EXERCISE 5C 

Solve for z: 

2T =32 

z __ 1 
3 =3 
2172 — 3_12 

Solve for x: 

8 =32 

27" = % 

441:71 — % 

81(17 — 27*(17 

Solve for z, if possible: 

4217+1 — 81—1 

Solve for x: 

3x2"=24 

12x37 =4 

[ 

  

Once we have the 

same base, we 

equate the indices. 

7= 
gr+l — 64 

5l—2z =% 

25¢ = 1 
251—1 — 1_;5 

( ):1+2 -9 

27 x gl =1 

4x 3742 =12 
5x(3)" =20
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€T IR LR (R (1) 

Solve for z: 4% 427 —20=0 

47 +2° -20=0 

(2°)2+2"—20=0 {compare a® +a — 20 = 0} 

(2% —4)(2° +5) =0 {a*+a—20=(a—4)(a+5)} 

{2 cannot be negative} 

  

5 Solve for x: 

a 4*—6(2°)4+8=0 b 4v—-2*-2=0 ¢ 9% —12(3")+27=0 

d 9" =3"4+6 e 25% —23(5")—50=0 f 49" +1=2(7") 

  

Check your answers using technology. 

GRAPHICS 
CALCULATOR 
INSTRUCTIONS 

NN EXPONENTIAL FUNCTIONS 
We have already seen how to evaluate o™ for any n € Q. 

But how do we evaluate a™ when n € R, so n is real but not necessarily rational? 

To answer this question, we can study the graphs of exponential functions. 

  

  

  

  

  

  

                      

The most simple exponential function has the form y = a® where a >0, a # 

For example, y = 2% is an exponential function. Ay 

We construct a table of values from which we graph the 8 

function: 

6 
y=2° 

4 

As x becomes large and negative, the graph of y = 27 

approaches the z-axis from above. However, it never 2 

touches the x-axis, since 2% becomes very small but never 1 

zero. 23 12 1 1 T 
So, as x — —o0, y — 0F. ' 

y =0 is therefore a horizontal asymptote. 

Plotting y = a® for x € Q suggests a smooth, continuous curve. This allows us to complete the curve 

for all = € R, giving meaning to a” for irrational values of .
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  INVESTIGATION 1 

In this Investigation we examine the graphs of various families of exponential GRAPHING 

functions. 
PACKAGE 

You can use the graphing package or your calculator. 

What to do: 

1 a 

b 

c
 

o 
c
 

o 

State the transformation which maps y = a” to y =a” + k. 

Predict the effect, if any, this transformation will have on: 

i the shape of the graph ii the position of the graph 

ii the horizontal asymptote. 

Check your predictions by graphing y = 2%, y =2% 41, and y =2* —2 on the same 

set of axes. 

State the transformation which maps y = a® to y = a® " 

Predict the effect, if any, this transformation will have on: 

i the shape of the graph ii the position of the graph 

iil the horizontal asymptote. 

Check your predictions by graphing y = 2%, y =221, y =272 and y =273 on 
the same set of axes. 

State the transformation which maps y =a® to y =p x a®, p > 0. 

Predict the effect, if any, this transformation will have on: 

i the shape of the graph ii the position of the graph 

iil the horizontal asymptote. 

Check your predictions by graphing y =27, y =3 x 2%, and y = % x 2% on the same 

set of axes. 

State the transformation which maps y = a” to y = —a”. 

Predict what the graph of y = —2% will look like, and check your answer using technology. 

State the transformation which maps y = a” to y = a?, ¢ > 0. 

Predict the effect, if any, this transformation will have on: 

i the shape of the graph ii the position of the graph 

iil the horizontal asymptote. 

Notice that 2% = (22)® =4% and 2%% = (23)% = 8%, 

Check your predictions by graphing y = 2%, y = 4%, and y = 8" on the same set of 

axes. 

State the transformation which maps y = a” to y =a™". 

; —z _ (9—1yz _ (1)* Notice that 27% = (271)* = (3)". 

Predict what the graph of y = (%)m will look like, and check your answer using technology.
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From your Investigation you should have discovered that: 

For the general exponential function y =p X a*~" +k where a >0, a# 1, p#0: 

e a controls how steeply the graph increases or decreases. 

e h controls horizontal translation. 

e [k controls vertical translation. 

e The equation of the horizontal asymptote is y = k. 

e If p>0, a>1 

the function is 

increasing. 

o If p>0, 0<a<1 

the function is 

decreasing. 

e If p<0, 0<a<1 

the function is 

increasing. 

e If p<0, a>1 

the function is 

decreasing. N
 / 

N 
‘We can sketch the graphs of exponential functions using:    

All exponential 

graphs have a 

horizontal asymptote. 

   o the horizontal asymptote     

e the y-intercept    
e two other points. 

  

Sketch the graph of y =277 — 3. 

Hence state the domain and range of f(z) =2"% — 3. 

  

  

  

For y=27% -3, 

  

  

  

the horizontal asymptote is y = —3. 

When =0, y=2"-3 

=1-3 

=-2 

  the y-intercept is —2. 

  When =2, y=2"2-3 

      

  

            
  

The domain is {z |z € R}. Therangeis {y|y > —3}.   
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EXERCISE 5D 

1 Consider the graph of y = 2% alongside. 

a Use the graph to estimate the value of: 
1 

i 22 or V2 ji 208 

i 21 v 2-V2 
b Use the graph to estimate the solution 

to: 

i 2r=3 il 22 =0.6 

¢ Use the graph to explain why 2% = 

has no solutions. 

Graphical methods can be used to 

solve exponential equations 

where we cannot equate indices. 

  

2 Match each function with its graph: 

  

  

  

  

  

  

  

  

                

  

a y=2° b y=10" 

€ y=-5 dy=(3)" 
_ 1\ 

e y=-(3) 

3 Use a transformation to help sketch each pair of functions on the same set of axes: GRAPHING 

a y=2" and y=2"-2 

¢ y=2% and y =22 

PACKAGE 
b y=2" and y=2"" 

d y=2" and y=2(2") 

L Draw freehand sketches of the following pairs of graphs: 

a y=3" and y=37" 

¢ y=3" and y=—3* 

b y=3" and y=3"+1 

d y=3% and y=3""" 

5 State the equation of the horizontal asymptote of: 

a y=37" b y=2"-1 ¢ y=3-—27° 

d y=4x2"42 e y=>5x 3+2 fy=-2x3"7_4
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6 Consider the exponential function f(x) = 3" — 2. 

a Find: i f(0) i f(2) i f(—2) 

b State the equation of the horizontal asymptote. 

¢ Sketch the graph of the function. 

d State the domain and range of the function. 

7 Consider the function g(x) =3 x (%)z +4. 

a Find: i g(0) il g(2) il g(—2) 

b State the equation of the horizontal asymptote. 

¢ Sketch the graph of the function. 

d State the domain and range of the function. 

8 Consider the function h(r) = —2*73 + 1. 

a Find: i h(0) il h(3) iii h(6) 

b State the equation of the horizontal asymptote. 

¢ Sketch the graph of the function. 

d State the domain and range of the function. 

9 For each of the functions below: 

i Sketch the graph of the function. 

ii State the domain and range. 

iii  Use your calculator to find the value of y when = = V2. 

iv Discuss the behaviour of y as © — Fo0. 

v Determine the horizontal asymptote. 

  

  

  

  

  

  

  

    

a y=2"+1 b y=2-2 ¢ y=2""+3 d y=3-27" 

10 The graph alongside shows the curve Ay 
y=a x 2% + b, where a and b are constants. 15 

a F%nd the values of @ and b. 10 Y—ax 2 b 

b Find y when z = 6. 5 

T 2 ¢ 1% 
=5 

10 

v                           

1 This graph shows the function f(z) =3.5—a"", 

where « is a positive constant. 

The point (—1, 2) lies on the graph. 

  
a Write down the coordinates of P. 

b Find the value of a. 

¢ Find the equation of the horizontal asymptote.  
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Example 13 o) Self Tutor 

Use technology to solve the equation 3% = 7. 
  

We graph Y; = 3% and Y, =7 on the same set of axes, and find their point of intersection. 

Casio fx-CG50 TI-84 Plus CE HP Prime 
. i DI LU TN A 1 | [EXE]:Show coordinates i I n 

  

    
EE Intersection: (1.77124, 7.00000) [EIR 

The solution is = ~ 1.77. 

  

12 Use technology to solve: 

a 2o =11 b 3°=15 ¢ 474 5=10 
d 32—y e 5x2° =18 f37v=09 
g 2x372 =168 h 26 x (0.95)" = i 2000 x (1.03)7 = 5000 

For the exponential function y = a®, why do we choose to specify a > 0? 

What would the graph of y = (—2)* look like? What is its domain and range? 

EANINT GROWIH AND bicaY 
In this Section we will examine situations where quantities are either increasing or decreasing 

exponentially. These situations are known as growth and decay modelling, and occur frequently in 

the world around us. 

Populations of animals, people, and bacteria usually grow in an 

exponential way. 

Radioactive substances, cooling, and items that depreciate in 

value, usually decay exponentially. 

  

For the exponential function 3 = p x a*~" + &k where a, p >0, a # 1, we see: 

e growthif a>1 

e decay if a < 1.
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GROWTH 

Consider a population of 100 mice which under favourable AP 

conditions is increasing by 20% each week. 

To increase a quantity by 20%, we multiply it by 1.2. 400 

If P, is the population after n weeks, then: 300 P(n) =100 (12) 

Py =100 {the original population} 

PL=Pyx1.2=100x 1.2 200 

Py =P, x1.2=100 x (1.2)° 

Py =P x 1.2 =100 x (1.2)3, and so on. 100 

From this pattern we see that P,, =100 x (1.2)", n € Z, " 

which is a geometric sequence. 0 (Hi?   
However, while the population of mice must always be an integer, we expect that the population will 

grow continuously throughout the year, rather than in big, discrete jumps. We therefore expect it will be 

well approximated by the corresponding exponential function P(n) = 100 x (1.2)", n € R. 

A scientist monitoring a grasshopper plague notices that the area affected by the grasshoppers is 

given by A(n) = 1000 x (1.15)" hectares, where n is the number of weeks after the initial 
observation. 

  

    
    

     
a Find the original affected area. 

Find the affected area after: i 5 weeks il 10 weeks. 

    

     

  

b 

¢ Draw the graph of the affected area over time. 

d Use your graph or technology to find how long it will take for the affected area to reach 

8000 hectares.     A(0) = 1000 x 1.15% = 1000 
the original affected area was 1000 hectares. 

  

  

  

  

    

b i A(5)=1000 x 1.15° ~ 2010 i A(10) = 1000 x 1.15'° ~ 4050 

The affected area is about The affected area is about 

2010 hectares. 4050 hectares. 

< A (hectares) 

8000 - 

6000 

4000 

2000 

a 

0 n (weeks)               
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d From the graph in ¢, it appears that it would take about g e 
15 weeks for the affected area to reach 8000 hectares. s 

or Using technology, the solution is ~ 14.9 weeks. 

  

1} 

  

EXERCISE 5E.1 

1 The weight W of bacteria in a culture ¢ hours after establishment is a> 1 

given by W (t) =100 x (1.07)! grams. indicates 
growth. 

a Find the initial weight. 

b Find the weight after: 

  

i 4 hours il 10 hours iii 24 hours. 

¢ Sketch the graph of the bacteria weight over time using the results 

of a and b only. T 

Use technology to graph Y; = 100 x (1.07)% s 
and hence check your answers. 

2 A breeding program to ensure the survival of pygmy possums is established with an initial population 

of 50 (25 pairs). From a previous program, the expected population P in n years’ time is given by 

P(n) = Py x (1.23)". 
a What is the value of Py? 

b What is the expected population after: 

i 2 years il 5 years ili 10 years? 

Sketch the graph of the population over time using a and b only. 

Q
 

Hence estimate the time needed for the population to reach 500. 

e Use technology to graph Y; = 50 x (1.23)X. Hence check your answers to d. 

3 A species of bear is introduced to a large island off Alaska 

where previously there were no bears. 6 pairs of bears were 

introduced in 1998. It is expected that the population will 

increase according to B(t) = By x (1.13)" where ¢ is the 

time, in years, since the introduction. 

a Find By. 

b Find the expected bear population in 2018. 

¢ Find the expected percentage increase in population from 

2008 to 2018. 

d How long will it take for the population to reach 200? 
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L& A flu virus spreads in a school. The number of people N 

infected after ¢ days is given by N =4 x 1.332¢, ¢ > 0. 

a Find the number of people who were initially 

infected. 

b Calculate the number of people who were infected 

after 16 days. 

¢ There are 1200 people in the school. Estimate the 

time it will take for everybody in the school to catch 

the flu. 

  

5 The speed V of a chemical reaction is given by V/(t) = Vj x 2995t where ¢ is the temperature 
in °C. 

a Find the reaction speed at: 

i 0°C il 20°C. 

b Find the percentage increase in reaction speed at 20°C compared with 0°C. 

¢ Find (V(50)—V(20) 
x 100% and explain what this calculation means. 

V(20) 

6 Kayla deposited £5000 into an account. The amount in the account increases by 10% each year. 

a Write a formula for the amount A(t) in the account after ¢ years. 

b Find the amount in the account after: 

i 2 years ii 5 years. 

¢ Sketch the graph of A(%). 

d How long will it take for the amount in the account to reach £8000? 

  

  

  

  

                          

DECAY 

Consider a radioactive substance with original weight 25, W (gfams) 

20 grams. It decays or reduces by 5% each year. The 

multiplier for this is 95% or 0.95. 20 

If W, is the weight after n years, then: 

Wo = 20 grams 15 

Wi =Wy x 0.95 = 20 x 0.95 grams 

Wa = Wy x 0.95 = 20 x (0.95) grams 10 
Wy = Wa x 0.95 = 20 x (0.95)* grams 

: 20 b Wao =20 x (0.95)*” ~ 7.2 grams 

n yearsJ 

Wigo = 20 x (0.95)1% ~ 0.1 grams. % 10 20 

From this pattern we see that W,, = 20 x (0.95)", n € Z, which is again a geometric sequence.   
However, we know that radioactive decay is a continuous process, so the weight remaining will actually 

be given by the smooth exponential curve W(n) =20 x (0.95)", n € R.
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I O R (T 

When a diesel-electric generator is switched off, the current dies away according to the formula 

I(t) = 24 x (0.25)" amps, where ¢ is the time in seconds after the power is cut. 

a Find I(¢t) when ¢t=0, 1, 2, and 3. 

  

b What current flowed in the generator at the instant it was switched off? 

¢ Plot the graph of I(t) for ¢ >0 using the information above. 

d Use your graph or technology to find how long it takes for the current to reach 4 amps. 

  

a I(t)=24x (0.25)" amps 

  

  

  

  

  

                

  

    

1(0) (1) 1(2) 1(3) 
=24x (025" =24x (025" =24x(0252 =24x(0.25)? 
= 24 amps = 6 amps = 1.5 amps = 0.375 amps 

b 1(0)=24 < I (amps) 

When the generator was switched 25 

off, 24 amps of current flowed in 20 

the circuit. 15 
9 

10 

43 

00 1 ~1.3 2 3 4 

d From the graph above, the time to reach 4 amps is about El [EXE]:Show coordinates 
=24x0.25"(x) 

1.3 seconds. -2 

or Using technology, the solution is ~ 1.29 seconds. 

  

    
  

EXERCISE 5E.2 

1 The weight of a radioactive substance ¢ years after being set aside is 

  

0<a<l1 
given by W (t) = 250 x (0.998)¢ grams. S 

a How much radioactive substance was initially set aside? decay. 

b Determine the weight of the substance after: 

i 400 years il 800 years ili 1200 years. 3 

¢ Sketch the graph of W (t) for ¢ > 0 using a and b only. \‘ 

d  Use your graph or graphics calculator to find how long it takes 

for the substance to decay to 125 grams. 

2 The temperature 7" of a liquid which has been placed in a refrigerator is given by 

T(t) =100 x (0.986)" °C where ¢ is the time in minutes. 

a Find the initial temperature of the liquid. 

b Find the temperature after: 

i 15 minutes ii 20 minutes iii 78 minutes. 

¢ Sketch the graph of 7'(t) for t >0 using a and b only.
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3 The weight W of radioactive substance remaining after ¢ years is given by 

W(t) = 1000 x (0.979)! grams. 

a Find the initial weight of the radioactive substance. 

b Find the weight remaining after: 

i 10 years ii 100 years iii 1000 years. 

¢ Graph the weight remaining over time using a and b only. 

d Use your graph or graphics calculator to find the time when 10 grams of the substance remains. 

e Write an expression for the amount of substance that has decayed after ¢ years. 

4 An initial count of orangutans in a forest found that the forest 

contained 400 orangutans. Since then, the destruction of their 

habitat has caused the population to fall by 8% each year. 

a Write a formula for the population P of orangutans ¢ years 

after the initial count. 

b Find the population of orangutans after: 

i 1 year ii 5 years. 

¢ Sketch the graph of the population over time. 

d How long will it take for the population to fall to 200? 

  

5 The intensity of light L diminishes below the surface of the sea according to the formula 

L = Ly x (0.95)¢ units, where d is the depth in metres measured from the surface of the sea. 

a If the intensity of light at the surface is 10 units, find the value of L. 

b Find the intensity of light 25 m below the surface. 

¢ A light intensity of 4 units is considered adequate for divers to be able to see clearly. 

Calculate the depth corresponding to this intensity of light. 

d Calculate the range of depths for which the light intensity is between 1 and 3 units. 

6 The value of a car after ¢ years is V = 24000 x r’ dollars, ¢ > 0. 

a Write down the value of the car when it was first purchased. 

b The value of the car after 1 year was $20400. Find the value of r. 

¢ How long will it take for the value of the car to reduce to $8000? Give your answer to the 

nearest year. 

7 The interior of a freezer has temperature —10°C. When a packet of peas is placed in the freezer, its 

temperature after ¢ minutes is given by 7'(t) = —10 + 32 x 2792 °C, 

a What was the temperature of the packet of peas: 

i when placed in the freezer ii after 5 minutes iii after 10 minutes? 

b Sketch the graph of T'(¢). 

¢ How long does it take for the temperature of the packet of peas to fall to 0°C? 

d  Will the temperature of the packet of peas ever reach —10°C? Explain your answer. 

8 The weight W; of a radioactive uranium-235 sample remaining after ¢ years is given by the formula 

W, = Wy x 2700002t grams ¢ > 0. 

a Find the original weight. b Find the percentage weight loss after 1000 years. 

1 ¢ How long will it take until = of the sample remains?
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[ THE NATURAL EXPONENTIAL 
We have seen that the simplest exponential functions y=(02)" y=5° 

have the form f(x) = a* where a >0, a # 1. 

Graphs of some of these functions are shown alongside. 

We can see that for all positive values of the base a, the 

graph is always positive. 

Hence a® >0 forall a>0. 

There are an infinite number of possible choices for the 

base number. 

  

However, where exponential data is examined in science, engineering, and finance, the base e ~ 2.7183 

is commonly used. 

e is a special number in mathematics. It is irrational like 7, and just as 7 is the ratio of a circle’s 

circumference to its diameter, e also has a physical meaning. We explore this meaning in the following 

Investigation. 

INVESTIGATION 2 

A discrete formula for calculating the amount to which an investment grows under compound interest 

is u, = ug(1+414)" where: 

u,, is the final amount, ug is the initial amount, 

¢ is the interest rate per compounding period, 

n is the number of periods, or times the interest is compounded. 

We will investigate the final value of an investment for various values of n, and allow n to become 

extremely large. 

What to do: 

1 Suppose $1000 is invested for one year at a fixed rate of 6% per annum. Use your calculator 

to find the final amount or maturing value if the interest is paid: 

a annually (n=1, ¢ =6% = 0.06) b quarterly (n=4, i= GT% = 0.015) 

¢ monthly d daily 

e by the second f by the millisecond. 

Comment on your answers. 

2 If r is the percentage rate per year, ¢ is the number of years, and N is the number of interest 

payments per year, then i = % and n = Nt. 

aqrt 

If we let a = E, show that the growth formula becomes wu,, = ug [(1 + l) } . 
T a
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3 For continuous compound growth, the number of interest 

payments per year N gets very large. 

a Explain why a gets very large as NV gets very large. 

b Copy and complete the table, giving your answers as 100 

accurately as technology permits. 1000 

& You should have found that for very large values of a, 10000 

1+ 1) ~ 2.718281828 459 100000 

( +;> o 1000000 
Use the key of your calculator to find the value of el 10000000 

What do you notice? 

  

5 For continuous growth, wu, = uge"™ where ug is the initial amount, r is the annual percentage 

rate, and ¢ is the number of years. 

Use this formula to find the final amount if $1000 is invested for 4 years at a fixed rate of 6% 

per annum, where the interest is paid continuously. 

From Investigation 2 we observe that: 

If interest is paid continuously or instantaneously then the formula for calculating a compounding amount 

un = up(1l +1i)™ can be replaced by u,, = upe™, where 7 is the percentage rate per annum and ¢ is 

the number of years. 

  HISTORICAL NOTE 

The natural exponential e was first described in 1683 by Swiss 

mathematician Jacob Bernoulli. He discovered the number while 

studying compound interest, just as we did in Investigation 2. 

  

The natural exponential was first called e by Swiss mathematician 

and physicist Leonhard Euler in a letter to the German 

mathematician Christian Goldbach in 1731. The number was 

then published with this notation in 1736. 

In 1748, Euler evaluated e correct to 18 decimal places. 

  

Leonhard Euler 

Euler also discovered some patterns in continued fraction expansions of e. He wrote that 

_ 1 1 521:—1 and e—1=1+ - 
I+ — 1+ - 

bt — 2+1+—1 
44—t 1 

18+4.... a4y 1 

  

  

T 

One may think that e was chosen because it was the first letter of Euler’s name or for the word 

exponential, but it is likely that it was just the next vowel available since he had already used a in 

his work.
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EXERCISE 5F 

1 

10 

13 

Sketch, on the same set of axes, the graphs of y = 2%, y=e¢”, and y = 3. GRAPHING 

Comment on any observations. 

Sketch, on the same set of axes, the graphs of y =e” and y=e"". 

What is the geometric connection between these two graphs? 

  

For the general exponential function y = pe?, what is the y-intercept? 

Consider y = 2¢”. 

a Explain why y can never be negative. 

b Find y if: 

i z=-20 il =20. 

Find, to 3 significant figures, the value of: 

a ée? b ¢ [ d e e el 

Write the following as powers of e: 

1 1 
a /e b 7 < 5 d ee 

Evaluate, to five significant figures: 

a 281 b 231 ¢ 829 d e—4829 

e 506_0‘1764 f 808_0‘6342 g 100061,2642 h 0.256_3’6742 

Expand and simplify: 

a (e +1)2 b (1+e")(1—e") ¢ ef(e”* —=3) 

Factorise: 
a €2 4 e b e2* _ 16 ¢ e —8e® +12 

a On the same set of axes, sketch and clearly label the graphs of: 

frx—e”, g: a2 h:z—e"+3 

b State the domain and range of each function. 

a On the same set of axes, sketch and clearly label the graphs of: 

fix—e”, g:x— —e", h:xr 10— e" 

b State the domain and range of each function. 

  ¢ Describe the behaviour of each function as = — +oc. 

t 

The weight of bacteria in a culture is given by W (t) = 2e¢? grams where ¢ is the time in hours 

after the culture was set to grow. 

a Find the weight of the culture: 

i initially i after 30 minutes 

iii - after 13 hours iv after 6 hours. 

b Hence sketch the graph of W(t) = 2e 
t 
2 

Solve for z: a e"=./e b ez ==
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14 The current flowing in an electrical circuit ¢ seconds after 

it is switched off is given by I(t) = 75¢~%1%* amps. 

a What current is still flowing in the circuit after: 

i 1 second ii 10 seconds? 

b Use your graphics calculator to help sketch the graph 

of I(t) = T5e0-15¢ 

¢ How long will it take for the current to fall to 1 amp? 

15 Consider the function f(x) = e”. 

a On the same set of axes, sketch y = f(x), y=a, and y= f~!(a). 

b State the domain and range of f~!. 

1 . 

8
 16 It can be shown that e® =14z + 327 + 5iza® + g2t + ... = 

0 i 
polynomial expansion. 

Check this statement by finding an approximation for e! using its first 20 terms. 

ACTIVITY 

Click on the icon to run a card game for exponential functions. 

  

REVIEW SET 5A 

  

which is an infinite 

CARD GAME 

  

1 Evaluate: 

a 83 b 27 3 ¢ 81 * 

2 Solve for x: 

T — r —aT xr 1 a 2 3=4 b 97 = 27272 c e? =z 

  

3 Consider the graph of y = 3" alongside. 
  

  a Use the graph to estimate the value of: 
  

i 3[)‘7 ii 3—(}5 
  

b Use the graph to estimate the solution 
  

  

  
to: 

  

  | 3=5 i 3w =1 
  

iii 6x3*=20 
  

  

  

  

  

  

rY
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Expand and simplify: 

a e(e®+e”) b (2% +5)? ¢ (22 —T7)(z2+47) 

Solve for x: 

a 6x2°=192 b 4x(3)" =324 

The point (1, v/8) lies on the graph of y = 2. Find the value of k. 

If f(z) =3 x2%, find the value of: 

a f(0) b f(3) ¢ f(=2) 

On the same set of axes, draw the graphs of y =2% and y = 2% —4. Include on your graph 

the y-intercept and the equation of the horizontal asymptote of each function. 

Consider y = 3* — 5. 

a Find y when z =0, +1, £2. b Discuss y as z — +o0.   

        

¢ Sketch the graph of y = 3" — 5. d State the equation of any asymptote. 

Consider y =3 — 277, 

  

        a Find y when z =0, +1, £2. b Discuss y as = — +oo. 

¢ Sketch the graph of y =3 —277. d State the equation of any asymptote. 

a On the same set of axes, sketch and clearly label the graphs of: 

fizr—e®, gixr—e® !, h:x—3—€° 

b State the domain and range of each function in a. 

  ¢ Describe the behaviour of each function as x — 4oc. 

The temperature of a dish ¢ minutes after it is removed from 

the microwave, is given by 7'(t) = 80 x (0.913)¢ °C. 

a Find the initial temperature of the dish. 

b Find the temperature after: 

i 12 minutes i 24 minutes ili 36 minutes. 

¢ Draw the graph of 7" against ¢t for ¢ > 0, using a 

and b or technology. 

  

d Hence find the time taken for the temperature of the 

dish to fall to 25°C. 

A phycologist investigates an algal bloom in a lake. Initially it covers 10 square metres of water. 

Each day after it was discovered, the area covered increases by 15%. 

a Write a formula for the area A(t) covered after ¢ days. 

b Find the area covered after: 

i 2 days ii 5 days. 

¢ Sketch the graph of A(%). 

d How long will it take for the affected area to reach 300 m??
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REVIEW SET 5B 

1 Evaluate, correct to 3 significant figures: 

a 32 

2 Expand and simplify: 

a (3—e)? 

3 Factorise: 
a 32 _3e 

4 Solve for z: 

a 2°tl =32 

5 Consider the graph of y = 4" alongside. 

a Use the graph to estimate the value of: 
i 4[)‘6 ii 4—1A1 

b Use the graph to estimate the solution 

to 4% =3. 

6 Suppose f(z)=2""+1. 

a Find f(3}). 

7 Consider y =2e % + 1. 

  

      a Find y when z =0, £1, 

b 27 
1 
5 

b 3x (1)7 =1029 

b Find a such that f(a 

2. 

¢ Sketch the graph of y =2e™* + 1. 

  

  

  

  

  

  

  

  

  

  

  

)
 A 

  

  

                                =3. 
b Discuss y as x — +oo. 

  d State the equation of any asymptote. 

8 Match each equation to its corresponding graph: 

a y=—¢" b y=3x2" 

A B 

D E   
¢ y=e"+1 

y 

d y=37 

C 
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9 Let f(z)=3" 

a Write down the value of: 

i f(4) i f(-1) 
b Find the value of k such that f(z +2) =k f(x), k €Z. 

10 Suppose y = a®. Express in terms of y: 

a a*® b a° c   
Va® 

11  Answer the Opening Problem on page 120. 

12 The weight of a radioactive substance after ¢ years is given by W = 1500 x (0.993)" grams. 

a Find the original amount of radioactive material. 

b Find the amount of radioactive material remaining after: 

i 400 years ii 800 years. 

Sketch the graph of W against ¢ for ¢ > 0. 

Hence find the time taken for the weight to reduce to 100 grams. Q 
n



  

Logarithms 

Contents: 

  

O
M
m
M
m
o
O
U
N
n
w
D
 Logarithms in base 10 

Logarithms in base a 

Laws of logarithms 

Natural logarithms 

Logarithmic equations 

The change of base rule 

Solving exponential equations 

using logarithms 

Logarithmic functions



146  LOGARITHMS (Chapter 6) 

OPENING PROBLEM 

In a plentiful springtime, a population of 1000 mice will 

double every week. 

  

The population after ¢ weeks is given by the exponential 

function P(t) = 1000 x 2' mice. 

Things to think about: 

a What does the graph of the population over time look 

like? 

b How long will it take for the population to reach 

20000 mice? 

¢ Can we write a function for ¢ in terms of P, which determines the time at which the population P 

is reached? 

  

In the previous Chapter we solved exponential equations by writing both sides with the same base, and 

by using graphs. 

In this Chapter we study a more formal solution to exponential equations in which we use the inverse 

of the exponential function. We call this a logarithm. 

Consider the graph of y = 10® shown. 

  

  

  Notice that the range of the function is {y | y > 0}. This 
means that every positive number y can be written in the 

form 107. 

For example: 

e When y=10, =1, so 10= 10" 

e When y =20, z~ 1.3, so 20~ 10'3. 

  

    

  

When we write a positive number y in the form 10%, we say 

that z is the logarithm in base 10, of y.           

  

The logarithm in base 10 of a positive number is the power that 10 must be raised to 

in order to obtain that number. 

For example: 

e The logarithm in base 10 of 1000 is 3, 

since 1000 = 103. 
We write log;, 1000 =3 or simply 

log 1000 = 3. 

o log(0.01) = —2 since 0.01 =102, 

    
    
    

If no base is indicated we 

assume it means base 10. 

log b means log, b. 

By observing that 1log 1000 = log(10*) =3 and log(0.01) = log(1072) = —2, we conclude 

that log10® =z forany z € R.
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Example 1 ) Self Tutor 

Find: a log100 

  

1 

a log100 = log(10%) =2 b log v/10 = log(107) = 1 
  

The logarithms in Example 1 can be found by hand because it is easy to write 100 and /10 as powers 

of 10. The logarithms of most values, however, can only be found using a calculator. 

For example, log 34~ 1.53 T T T 

so 34~10%%3 / 
. . GRAPHICS 

Logarithms allow us to write any number as CALCULATOR i INSTRUCTIONS 
a power of 10. In particular: 

x = 10'°8% for any z > 0. 

Use your calculator to write the following in the form 10” where « is correct to 4 decimal places: 

  

  

  

a8 b 800 ¢ 0.08 

a 8=10"%® b 800 = 10"&5° € 0.08= 10800 
~ 100.9031 ~ 102,9031 ~ 1071.0969 

Casio fx-CG50 TI-84 Plus CE HP Prime 
B Dol NORMAL FLOAT AUTO REAL DEGREE MP n o Function 

lTog 8 
m 0.903089987 

JUMP JDELETEPMATVCT] MATH      
EXERCISE 6A 

1 Without using a calculator, find: 

  

a log10000 b 1log0.001 ¢ log10 d logl 

¢ logy/I0  log YI0 s log<4110> h log(10v0) 

i log /100 i log(%) I log(10 x ¥/10) I log(1000/T0) 

Check your answers using your calculator. 

2 Simplify: 

a log(10") b log(10° x 100) ¢ lo (1—0) d log( X g g g Tom g 100 

3 a Explain why log237 must lie between 2 and 3. 

b Use your calculator to evaluate log237 correct to 2 decimal places.
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4 a Between which two consecutive whole numbers does log(0.6) lie? 

b Check your answer by evaluating log(0.6) correct to 2 decimal places. 

5 Use your calculator to evaluate, correct to 2 decimal places: 

a log76 b logl14 

e log(0.4) f log3247 

6 For what values of z is logx: 

a positive b zero 

¢ log3 

g 1og(0.008) 

¢ negative 

d log831 

h log(—7) 

d undefined? 

7 Use your calculator to write the following in the form 10* where x is correct to 4 decimal places: 

b 60 

g 1500 h 

a6 

f 15 

Example 3 

¢ 6000 d 0.6 

1.5 i 015 

e 0.006 

i 0.00015 

a Use your calculator to find: 

b Explain why log20 =log2+ 1. 

i log2 i log20 

) Self Tutor 

  

  

    
  

a g b log20 = log(2 x 10) 
2 . 

log jo 03010299957 = log(10982 x 10')  {z = 10'°&*} 
og 

B 1.301029996 = log(10'82+1) {adding indices} 

=log2+1 

i log2 ~0.3010 
i log20 =~ 1.3010 

8 a Use your calculator to find: i log3 i log300 

b Explain why log 300 = log3 + 2. 

9 a Use your calculator to find: i logh i 1og(0.05) 

b Explain why log(0.05) =logh — 2. 

Example 4 

Find 2 such that: 

  

a logz=3 

a logx =3 b log 
1010gz — 103 lolog 

. x = 1000 

LR AR (T8 

r~ —0.271 
@ oy 100271 

z ~ 0.536 

  

10 Find z such that: 

a logz=2 

e logz=% 

i logz ~0.8351 

b logz=1 

f logz=—% 

i logx = 2.1457 

¢ logz =0 

g logx =4 

k logax ~ —1.378 

Remember that 

10%°8% = g, 

  

d logax=-1 

h logz = -5 

I logz ~ —3.1997
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CNMIT LOGARITHMS IN BASE « 
In the previous Section we defined the logarithm in base 10 of a number as the power that 10 must be 

raised to in order to obtain that number. 

We can use the same principle to define logarithms in other bases: 

    
      

The logarithm in 

base a of b is 

written log,, b. 

The logarithm in base a of b is the power that a must be raised to in 

order to obtain b. 

For example, to find log, 8, we ask “What power must 2 be raised to 

in order to obtain 8?”. We know that 2% =8, so log, 8 = 3. 

a® =0 and x =log, b are equivalent statements. 

Forany b>0, a*=0b & x=log,b 

  

e LR R TS 

Write an equivalent exponential statement for log,;, 1000 = 3. 

Write an equivalent logarithmic statement for 3% = 81. 

From log,, 1000 = 3 we deduce that 10% = 1000. 

From 3* =81 we deduce that log; 81 = 4. 

  

  

EXERCISE 6B 

1 Write an equivalent exponential statement for: 

  

a log;;100 =2 b log,,10000 = 4 ¢ log(0.1) = -1 

d log;, V10 = 1 e log,8=3 f log;9=2 

9 logy(§) =2 h logy V27 =1.5 i logs(\}g) =-1 

2 Write an equivalent logarithmic statement for: 

a 43=064 b 52=25 ¢ 72=149 d 260 =64 

e 273=141 f 1072 =0.01 g 27'=1 h 373=4 

Example 6 

Find: a log, 16 

  

a log, 16 b logs(0.2) ¢ logy, V100 d log, (%) 

= logy(2*) = logs (%) - 1Og10((102)%) 1 

= =1logs(571) =logy(2 ) 
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3 Without using a calculator, find: 
To find log, b write 

  

a log,(, 100000 b log;,(0.01) ¢ log;+/3 b as a power of a. 

d log, 4 e log, 64 f log, 128 

g logs25 h logs 125 i log,(0.125) 

i logy3 k log, 16 I logss 6 

m log; 243 n log, /2 o logg2 

p log, (66) q log,1 r logy9 F 

s logs (%) t log,, /1000 u log, (%) 

v logg (25\/5) w logs (#) x log, (fig) 

. GRAPHICS 
Check your answers using technology.  CALCULATOR 

L Simplify: 

a log,(z?) b log, (%) ¢ log, T 

d log,, (m?%) e log, Vk f log,(z1/7) 

1 1 . = 
g log, <a—2> h log, <%> i log,, vVm 

Example 7 R 1) 

Solve for z:  logzx =5 

  

  

logzz =5 

z=3° 

T =243 

5 Solve for x: 

a logyz =3 b logyz =1 ¢ log,81=4 d logy(z—6)=3 

6 Suppose log, b= x. Find, in terms of z, the value of log;, a. 

HISTORICAL NOTE 

Acharya Virasena was an 8th century Indian mathematician. Among other areas, he worked with 

the concept of ardhaccheda, which is how many times a number of the form 2" can be divided by 2. 

The result is the integer n, and is the logarithm of the number 2" in base 2. 

In 1544, the German Michael Stifel published Arithmetica Integra which contains a table expressing 

many other integers as powers of 2. In effect, he had created an early version of a logarithmic table.
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TR LAWSOF LOGARITHMS 
INVESTIGATION 1 

What to do: 

  

1 a Use your calculator to find: 

i log2+log3 ii log3+log7 iil log4 + log 20 

iv log6 v log2l vi log80 

b From your answers, suggest a possible simplification for logm + logn. 

2 a Use your calculator to find: 

i log6—log2 ii log12—1log3 iil log3 —logh 

iv log3 v log4 vi log(0.6) 

b From your answers, suggest a possible simplification for logm — logn. 

3 a Use your calculator to find: 

i 3log2 ii 2logh iil —4log3 

iv log(2%) v log(5%) vi log(37%) 

b From your answers, suggest a possible simplification for mlogb. 

From the Investigation, you should have discovered the three important laws of logarithms: 

e logm + logn = log(mn) for m,n >0 

. logm—lognzlog(fl) for m,n >0 
n 

e mlogb = log(b™) for b>0 

More generally, in any base a where a # 1, a > 0, we have these laws of logarithms: 

e log, m + log, n =log,(mn) for m,n>0 

e log, m — log, n = log, (E) for m,n >0 
n 

  

e mlog, b=log,(b™) for b>0 

Proof: 

m m ° log, (mn) ° log,, (—) ° log, (b™) 
n 

= log, (alog“ ™ qlo8a ") alogam = log, ( (alogfl b)m) 

_ loga (alaga m + log, n) = loga ( alog, ) _ 10ga (am log,, b) 

= log, m +log, n =log, (aloga m —log, n) =mlog, b
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Example 8 ) Self Tutor 

Use the laws of logarithms to write as a single logarithm or as an integer: 

b log;24 —logs 8 a logbh+log3 

log5 +log 3 

=log(h x 3) 

¢ logy5—1 

logy 5 —1 

= log, 5 — logy(2") 
=log 15 — logz(%) 

  

  

EXERCISE 6C 

1 Write as a single logarithm or as an integer: 

a log8+log2 b log4 +logh ¢ log40 —logh 

d logp—logm e log, 8 —log,2 f logh+ log(0.4) 

g log250 + log 4 h log; 100 — logs 4 i log2+log3+log4 

i logh+logd —log2 lc logy 6 — logs 2 —logs 3 1 log(%) +log3 +log7 

2 Write as a single logarithm: 

a log7+2 log4 —1 ¢ 1+1logy3 

d logzb—2 e 24log2 f logh0—4 

g t+logw h log,, 40 —2 i 3—1logs 50 

  

Example 9 

  

Simplify by writing as a single logarithm or as a rational number: 

  

  

    

  

  

      

    

a 2log7—3log?2 b 2log3+3 ¢ log8 
log4 

3 
a  2log7—3log2 b  2log3+3 ¢ g8 _ Loe() 

. . - . log4  log(2?) 
=log(7%) — log(2”) = log(3%) + log(10°) 32 

= log49 — log 8 = log 9 + log 1000 "~ 2log?2 

=log(%) = 1log 9000 =3 

3 Write as a single logarithm or integer: 

a bHlog2+log3 b 2log3+ 3log2 ¢ 3log4 —log8 

d 2logs 5 — 3logs 2 e Llogs4+logg3 f Llog(3) 

g 3—log2—2logh h 1—3log2+log20 i 2*%10&14*10&15 

4 Simplify without using a calculator: 

a log4 b logs 27 ¢ log 8 

log 2 logs 9 log 2 

log3 logg 25 f log, 8 

d log9 ¢ log3(0.2) log4(0.25)
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3 CL PR LR AR (T 

Show that: 

a log(}) = —2log3 b log500 = 3 —log 2 

log 500 

= log(+5%) 
= log 1000 — log 2 

= log(10®) — log 2 

  

=3—log2 

5 Show that: 

a log9=2log3 b logv2=4log2 ¢ log(}) = —3log2 

d log(}) = —logh e logh=1—log2 f log5000 =4 — log 2 

6 The number a x 10 where 1 < a < 10, k € Z is written in standard form. Show that 

log(a x 10%) = loga + k. 

7 Suppose p =log,2, g=1log,3, and r =log,5. Write in terms of p, ¢, and r: 

  

  

a log, 6 b log, 45 ¢ log, 108 

d log,(3f) e log, (&) t log,(2) 

8 Suppose logy, P =z, log, @ =y, and log, R = z. Write in terms of z, y, and z: 

a logy(PR) b log,(RQ?) ¢ log, (%) 

d log, (P*/Q) e log, (3—;) f logz(R;\éQ> 

9 If log, M =1.29 and log,(N?)=1.72, find: 

a log, N b log,(MN) ¢ log, (N—;{) 

10 Write as a single logarithm: 

log(8!) — log(7!) + log(6!) — log(5!) + log(4!) — log(3!) + log(2!) — log(1!) 

& 
(/ 

11 Write log,(6!) in the form a+log, b, where a, b€ Z and b is as small as possible.
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CINIINNTT NATURAL LOGARITHMS 
The logarithm in base e is called the natural logarithm. 

We use Inaz to represent log, x, and call Inz the natural logarithm of x. 

Ine* =2 and e™? =z, 

  

  

  

  
  

Find: a Ine? b In./e G @8 

¢ P 
a lned= b Inye =In(e?) ¢ e2Ind = (In5)2 

= % =52 

=25 

As with base 10 logarithms, we can use our B Hatibelorn] (el 

calculator to find natural logarithms. D & 3.401197382 
. GRAPHICS 0 

For example, In30 ~ 3.40, which means CALCULATOR 
INSTRUCTIONS 

that 30 ~ €340, 

  

JUMP JDELETE PMATVCT] MATH, 

L R) «) Self Tutor 

Use your calculator to write the following in the form e where k is correct to 

4 decimal places: 

a 50 b 0.005 

a 50= E1n50 {Z — elnz} b 0.005 = eanA005 

~ 63'9120 ~ 8_5‘2983 

Casio fx-CG50 TI-84 Plus CE 
[HathDeglForn1) [d7c)Real [ O T 

In 50 
n 3.912023005 In0.005) o eaai7ae7 

JUMP JDELETE PMATVCT] MATH      
LAWS OF NATURAL LOGARITHMS 

The laws for natural logarithms are the laws for logarithms written in base e: 

e Inm+Inn=In(mn) for m,n>0 
m 

. lnm—lnn:ln(—) for m, n >0 
n 

e minb=In(b™) for b>0
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EXERCISE 6D 

1 Without using a calculator find: 

a In(e?) b In(e?) ¢ In((ve)?) d Inl 

e ln(%) f Inye g In (eiz) h In <%> 

Check your answers using a calculator. 

2 Simplify: 

a elns b 2ln3 ¢ e—Ins d e—2Wn2 

e Ine” f In(e x ) g In(e® x e?) h In((e*)’) 

3 Use your calculator to find, correct to 3 decimal places: 

a Inl2 b In68 ¢ In(1.4) d In(0.7) e In500 

4 Explain why In(—2) and In0 cannot be found. 

  

  

5 Use your calculator to write the following in the form e where k is correct to 4 decimal places: 

a6 b 60 ¢ 6000 d 06 e 0.006 

f 15 g 1500 h 1.5 i 015 i 0.00015 

2 CUTICR R ORI R (TS 

a Inzx=217 

a lnz=217 
PSS 17 

. x=~8.76 

6 Find z if: 

a Ine=3 b Inz=1 ¢ lnz=0 d Inz=-1 

e Inz=-5 f Inz~0.835 g Inz~2.145 h Inz~-32971 

7 a Write in simplest form: 

i In(e”) ii ene 

b What does this tell us about the functions y =e* and y =Inaz? 

  

  

e L) «) Self Tutor 

Use the laws of logarithms to write as a single logarithm: 

a In5+In3 b In24—1n8 

a In5+1n3 b In24 —1In8 c In5 -1 

=1In(5 x 3) =In(%) =In5 —In(et) 

=Inl5 =In3 :111(5) 
€ 
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8 Write as a single logarithm or integer: 

  

a Inl5+1n3 b Inl5—1n3 ¢ In20—1n5 

d In4+1n6 e In5+1n(0.2) f m2+In3+1Inb5 

g 1+1In4 h In6-1 i In5b+In8—1In2 

i 2+1n4 k In20-2 I In12—In4—1n3 

B R LR R (T8 

Use the laws of logarithms to simplify: 

a 2ln7—3In2 b 2In3+3 
  

2In7—3In2 b 2In3+3 

= In(7%) — In(2%) =1n(3?) + In(e®) 
=1n49 —In8 =1n9 +In(e?) 

=In(%) = In(9¢%) 

  

9  Write in the form Ina, a € R : 

  

  

a 5ln3+1In4 b 3In2+2In5s ¢ 3In2—1In8 

d 3n4-2In2 e tln8+In3 fo2in(s) 

g —In2 h —ln(%) i —2111(%) 

j 4ln2+2 k in9—1 I —3In2+3% 

10 Show that: 

a ln27=3In3 b ln\/gzélnB ¢ In(s) =-4In2 

€ 
d ln(%) =—1n6 e ln(%> = —%1112 f ln<g> =1-—1Inb 

g In(6c) = In6+1 h n{/5=1I5 i 1n<{;§>:7éln2 

1 e? o V3 _1 _ 1 _ 1 
j 1n<§>—2 3ln2 k 1n<e—4> sn3—4 1 1n<16><\3/6>_ 4ln2 -3 

THEORY OF KNOWLEDGE 

It is easy to take modern technology, such as the electronic calculator, for granted. Until electronic 

computers became affordable in the 1980s, a “calculator” was a profession, literally someone who 

would spend their time performing calculations by hand. They used mechanical calculators and 

techniques such as logarithms. They often worked in banks, but sometimes for astronomers and 

other scientists. 

The logarithm was invented by John Napier (1550 - 1617) and first published in 1614 in a Latin 

book which translates as a Description of the Wonderful Canon of Logarithms. John Napier was 

the 8th Lord of Merchiston, which is now part of Edinburgh, Scotland. Napier wrote a number of 

other books on many subjects including religion and mathematics. One of his other inventions was a 

device for performing long multiplication which is now called “Napier’s Bones”. Other calculators, 

such as slide rules, used logarithms as part of their design. He also popularised the use of the decimal 

point in mathematical notation.
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Logarithms were an extremely important development, and they had 

an immediate effect on the seventeenth century scientific community. 

Johannes Kepler used logarithms to assist with his calculations. This 

helped him develop his laws of planetary motion. Without logarithms 

these calculations would have taken many years. Kepler published 

a letter congratulating and acknowledging Napier. Kepler’s laws 

gave Sir Isaac Newton important evidence to support his theory of 

universal gravitation. 200 years later, Laplace said that logarithms 

“by shortening the labours, doubled the life of the astronomer™. 

  

Johannes Kepler 

1 Can anyone claim to have invented logarithms? 

2 Can we consider the process of mathematical discovery as an evolution of ideas? 

3 Has modern computing effectively doubled the life of a mathematician? 

Many areas of mathematics have been developed over centuries as several mathematicians have 

worked in a particular area, or taken the knowledge from one area and applied it to another field. 

Sometimes the process is held up because a method for solving a particular class of problem has not 

yet been found. In other cases, pure mathematicians have published research papers on seemingly 

useless mathematical ideas, which have then become vital in applications much later. 

In Everybody Counts: A report to the nation on the future of Mathematical Education by the National 

Academy of Sciences (National Academy Press, 1989), there is an excellent section on the Nature 

of Mathematics. It includes: 

“Even the most esoteric and abstract parts of mathematics - number theory and logic, for 

example - are now used routinely in applications (for example, in computer science and 

cryptography). Fifty years ago, the leading British mathematician G.H. Hardy could boast 

that number theory was the most pure and least useful part of mathematics. Today, Hardy’s 

mathematics is studied as an essential prerequisite to many applications, including control of 

automated systems, data transmission from remote satellites, protection of financial records, 

and efficient algorithms for computation.” 

4 Should we only study the mathematics required to enter our chosen profession? 

5 Why should we explore mathematics for its own sake, rather than to address the needs of 

science? 

NI LOGARITHMIC EQUATIONS 
We can use the laws of logarithms to write equations in a different form. This can be particularly useful 

if an unknown appears as an exponent. 

Since the logarithmic function is one-to-one, we can take the logarithm of both sides of an equation 

without changing the solution. However, we can only do this if both sides are positive.
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Example 16 «) Self Tutor 

Write as a logarithmic equation (in base 10): a y=a% b P= 2—\/0_ 
n 

  

a y=a?b b IRES (fl) 

- logy = log(a®b) 
20 

logy = log(a?) + logb logP:log<_l) 

logy = 2loga + logb n? 

log P = log 20 — log(n?) 

log P = log 20 — % logn 

  

  

LR R T     

    
Write without logarithms: 

a logA=logb+2loge b log, M =3log,a —2      
       log A = logb+ 2logc logy M = 3logy a — 2 

      

. log A =logb + log(c?) . logy M = logy(a®) — log,(2%) 

", log A = log(bc?) . a’ 
A= . logy M = log, oy 

3 
M= 

4 

EXERCISE 6E 

1 Write as a logarithmic equation (in base 10), assuming all variables are positive: 

a y=2" b y =200 ¢ M=ad d T=5/d 
a o _ E e R=0bVI t Q= g y=ab h F=—2 

L= i N=,/% k S =200 x 2t | y=2 
c b bn 

2 Write without logarithms: 

a logD =loge+log2 b log, F =log, 5 —log,t < logP=%logz 

d log, M =2log,b+log,c e logB =3logm —2logn f 10gN=—%logp 

g logP =3logx+1 h log, Q@ =2—1log,z 

3 Write without logarithms: 

a mD=Inz+1 b InF=—-Inp+2 ¢ mP=1ha 

d InM=2Ilny+3 e mB=3Int—1 f InN=—%Ing 

g In@Q~3lnx+2.159 h InD =~ 04Inn —0.6582 

4 a Write y=3x2" as a logarithmic equation in base 2. 

b Hence write z in terms of y. 

¢ Find the value of x when: i y=3 i y=12 il y=30
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5 Solve for z: 

a logy 27+ logy (%) =logs b logy z = logs 8 — logs (6 — ) 

¢ logs 125 — logs v/5 = logs @ d logyyx = 1+ logy, 10 

e logx+log(z + 1) =log30 f log(xz+2) —log(x —2) =logh 

6 Let x=1log,7. 

a Write the equation without logarithms. 

b Take the logarithm in base 10 of both sides of your equation from a. Hence show that 

log7 

log 2 

7 Consider the exponential equation a” =b where a, b > 0. 

log, 7 = , and calculate this number.   

a Explain why x = log, b. b Take the logarithm in base 10 of both sides of a* = b. 

logb 
  ¢ Hence show that = =log, b= . 
loga 

[ I THG CHANGE OF BASE RULE 
In the previous Exercise you should have proven the base 10 case of the change of base rule: 

  

log, a 
log, a = for a,b,¢>0 and b, c # 1. 

log,. b 

Proof: If logya=ux, then b" =a 

log, b* =log.a {taking logarithms in base c} 

. xlog.b=1log.a {power law of logarithms} 

  

  

= log.a 

log. b 

log.a 

logya = logC b 
C 

We need this rule to evaluate logarithms in bases other than 10 or e. 

Example 18 ) Self Tutor 

Find log, 9 by: a changing to base 10 b changing to base e. 

  

log109 b log, 9= In9 
logy 2 In2 

~ 3.17 ~3.17 

a log,9= 

  

EXERCISE 6F 

1 Use the change of base rule with base 10 to calculate: 

a logy 7 b log, 40 ¢ logs 180 

d log, 1250 e logs(0.067) f log, 4(0.006 984) 
2 

Check your results using the change of base rule with base e.
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2 Simplify log,, n x log,(m?). 
4 3 

3 Without using technology, show that QToss M osrs = 175, 

Hint: Use the change of base rule with base 2. 

4 Solve for z: 

a log(z%) +logy vz =8 b logg(2®) = logg, 125 — log, /7 

5 Given z = logy(y?®), express log, 81 in terms of x. 

QUATIONS 
ARITHMS 

In Chapter 5 we found solutions to simple exponential equations where we could make equal bases and 

then equate exponents. However, it is not always easy to make the bases the same. In these situations 

we can use logarithms. 

  

1 3ET IR L) ORI L) 

a Solve the equation 2* =30 exactly. 

b Use your calculator to evaluate the solution correct to 2 decimal places. 

a 2% =30 

log(2”) = log 30 {taking the logarithm of each side} 

zlog2 = log 30 {log(b™) = mlogb} 

  

  

  

    
_ log30 

log 2 

b log 30 % m 8 
~ 4_91’ so the solution is = ~ 4.91. NORMAL FLOAT AUTO REAL RADIAN MP n 

222 103(30)/109(2) 
4.906890596 

EXERCISE 6G 

1 Consider the equation 2% = 20. 

a Explain why the solution to this equation lies between z =4 and z =5. 

b Find the solution exactly. 

¢ Use your calculator to evaluate the solution correct to 2 decimal places. 

2 Consider the equation 3" = 40. 

a Between which two consecutive whole numbers does the solution lie? 

b Find the solution exactly. 

¢ Use your calculator to evaluate the solution correct to 2 decimal places.
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3 Solve for z: i exactly ii  correct to 2 decimal places. 

a 2r=10 b 3*=20 ¢ 47 =50 

d (3)" =0.0625 e (3)" =01 f 107 = 0.000015 

4 Solve for z, correct to 3 significant figures: 

a 57 =40 b 3% =2t ¢ 2ot = p2w 

3R LR (R TS 

Find z exactly: 

a =30 

a  e"=30 b 3z =21 
z = 1n30 o7 

Z-m7 
2 

z=2In7 

5 Solve for z, giving an exact answer: 

a e"=10 b e” =1000 ¢ 2" =03 

d e?=5 e e =18 fe =1 

6 Solve for x, giving an exact answer: 

a 3x2"=175 b 7x(1.5)" =20 ¢ 5x(08)*=3 

d 4x27%=0.12 e 300 x 5% = 1000 f 32xe 0% = 

7 Solve for x exactly: 

a 25T —3 x5 =0 b 8x97 -3¢ =0 ¢ 27 -2x4"=0 

Find exactly the points of intersection of y =e* —3 and y=1—3e"". 

Check your solution using technology. 

  

  

     
      The functions meet where 

GRAPHING 

ef—3=1-3e"" PACKAGE 

e —4+3 =0 

o€ —4e"+3=0  {multiplying each term by e”} 

(e —1)(e*—3)=0 

e®=1 or 3 

. x=Inl or In3 [EXE]:Show coordinates 
! Vistex3 v ] 

¥2=1-3(e"(-x)) 
. x=0 or In3 

When =0, y=¢e’—3=-2 

When z=1In3, y=€"%-3=0 

the functions meet at (0, —2) and at (In3, 0). 
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8 Solve for x: 

a e =2¢" b e?=e7® € e —5e"+6=0 

d e +2=3e"" e 1+12e 7 =¢€* f e+e?= 

9 Find algebraically the point(s) of intersection of: 

a y=c¢® and y=¢** -6 b y=2"+1 and y=7—¢" 

¢ y=3—¢€" and y=5e""—-3 

Check your answers using technology. 

I T 
A farmer monitoring an insect plague finds that the area affected by the insects is given by 

A(n) = 1000 x 20-™ hectares, where n is the number of weeks after the initial observation. 

  

a Use technology to help sketch the graph of A(n). Hence estimate the time taken for the 

affected area to reach 5000 hectares. 

b Check your answer to a using logarithms. 
  

  

a From the graph, it appears that it will take 

about 3.3 weeks for the affected area to reach 

5000 hectares. 6000 

b When A(n) = 5000, 

1000 x 2%7" = 5000 
- 20.7n =5 

-, 1log(2°™) = log5 

  

  

  5000 — 

4000   

  

  

                          0.7nlog2 = log5 2000 
n= _log5 3.32 ks) 

0.7 x log 2 0 

  

it will take about 3 weeks and 2 days.       
10 The population of turtles in an isolated colony is P(t) = 852 x (1.07)!, where ¢ is the time in 

years after the colony was first recorded. How long will it take for the population to reach: 

a 1000 turtles b 1500 turtles? 

11 The weight of bacteria in a culture ¢ hours after establishment is given by W (t) = 20 x 20-15¢ 
grams. Find, using logarithms, the time for the weight of the culture to reach: 

a 30 grams b 100 grams. 

12 A biologist is modelling an infestation of fire ants. He 

determines that the area affected by the ants is given by 

A(n) = 2000 x "5 hectares, where n is the number 
of weeks after the initial observation. 

a Use technology to help sketch the graph of A(n). 

b Hence estimate the time taken for the infested area 

to reach 10000 hectares. 

¢ Check your answer to b using logarithms.  
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13 

14 

15 

16 

17 

18 

19 

20 

21 

23 

A house is expected to increase in value at an average rate of 7.5% p.a. If the house is worth 

£360000 now, when would you expect it to be worth £550 000? 

Thabo has $10000 to invest in an account that pays 4.8% p.a. compounded annually. How long 

will it take for his investment to grow to $15000? 

Dien invests $15000 at 8.4% p.a. compounded monthly. He will withdraw his money when it 

reaches $25 000, at which time he plans to travel. The formula ¢, = to X ™ can be used to model 

the investment, where n is the time in months. 

a Explain why r =1.007. b After how many months will Dien withdraw the money? 

The mass M, of radioactive substance remaining after ¢ years is given by 

M, = 1000 x e~%-%4 grams. Find the time taken for the mass to: 

a halve b reach 25 grams ¢ reach 1% of its original value. 

The current / flowing in a transistor radio ¢ seconds after it is switched off, is given by 

I = Ip x 27902 amps. Show that it takes 

original value. 

  023 seconds for the current to drop to 10% of its 
og 

A sky diver jumps from an aeroplane. His speed of descent is given by 

V(t) =50(1—e%2%) ms~!, wheret is the time in seconds. Show that it will take 5In 5 seconds 

for the sky diver’s speed to reach 40 ms~1. 

Answer the Opening Problem on page 146. 

The weight of radioactive substance remaining after ¢ years is given by 

W = 1000 x 270-94¢ grams. 

a Sketch the graph of W against ¢. b Write a function for ¢ in terms of . 

¢ Hence find the time required for the weight to reach: i 20 grams ii 0.001 grams. 

The temperature of a liquid ¢ minutes after it is placed in a refrigerator, is given by 

T =4+96x e 003t oC, 

a Sketch the graph of 1" against ¢. b Write a function for ¢ in terms of 7. 

¢ Find the time required for the temperature to reach: i 25°C i 5°C. 

A parachutist jumps from the basket of a stationary 

hot air balloon. His speed of descent is given by 

V =60(1—-2792") ms~! where ¢ is the time in seconds. 
Write an expression for the time taken for his speed to 

reach v ms™1. 

  

A meteor hurtling through the atmosphere has speed of descent given by 

V() = 650(4 +2 x e=%1Y) ms™! where ¢ is the time in seconds after the meteor is sighted. 

a Is the meteor’s speed increasing or decreasing? 

b Find the speed of the meteor: 

i when it was first sighted ii after 2 minutes. 

¢ How long will it take for the meteor’s speed to reach 3000 ms™1?
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  INVESTIGATION 2 

The “rule of 72” is used to estimate the time a quantity takes to double in value, given RUTEOS 

the rate at which the quantity grows. 

Click on the icon to view this Investigation. 

[T LOGARITHMIC FUNCTIONS 
We have seen that log, a” = a'%%® = 7. 

Letting f(z) =log,z and g(xz) =a", wehave fog=go f=u. 

We can therefore say that the logarithmic function log, x is the inverse of the exponential function a®. 

Algebraically, this has the effect that the logarithmic and exponential functions “undo” one another. 

Geometrically, it means that the graph of y =log, z, a >0, a # 1 is the reflection of the graph of 

y =a” in the line y = x. 

We have seen previously the shape of the exponential function y = a® where a >0, a # 1. 

For 0<a<1:    
    

The horizontal asymptote for all of these functions is the z-axis y = 0. 

By reflecting these graphs in the line y = x, we obtain the graphs for y = log, . 

For 0<a<1: MY 

  

The vertical asymptote of y = log, = is the y-axis z = 0. 

For 0<a<1: as x — 00, y — —00 For a>1: as x — o0, y — 00 

as z— 0%, y— o0 as z— 0", y— -0 

PROPERTIES OF y = log, = 

Since we can only find logarithms of positive numbers, the domain of y = log, = is {z |z > 0}.
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We can compare the functions y = a” and y =log, x as follows: 

Doman | __ccR | o0 | 
Fozonal =0 

TRANSFORMATIONS OF LOGARITHMIC FUNCTIONS 

Click on the icon to explore the graphs of functions of the form y = pln(z — h) + k. LOGARITHMIC 

  

  

Consider the function f(z) = logy(z — 1) + 1. 

  

a State the transformation which maps y =log,z to y = f(z). 

Find the domain and range of f. ¢ Find any asymptotes and axes intercepts. b 

d  Sketch the graph of y = f(x) showing all important features. 

e Find the inverse function f—!. 
  

f(x) is a translation of y =log, z by ( } ) 

b 2—1>0 when z>1 

So, the domain is = > 1 and the range is y € R. 

¢ As v — 17, y— —o0, so the vertical asymptote is = = 1. 

As x — 00, y— 00, so there is no horizontal asymptote. 
GRAPHICS 

  

  

  

    
  

  

  

  

  

  

  

    
          
  

                          

When z =0, y is undefined, so there is no y-intercept. CALCULATOR 
INSTRUCTIONS 

When y =0, logy(z—1)=—1 

z—1=2"" 

. x=%  So, the z-intercept is 3. 

d When =2, y=1log,(2—-1)+1 

=1 

When =5, y=log,(5—1)+1 

=log,4+1 

=2+1 
S 

e [ is defined by y=logo(z —1)+1 <— 

71 is defined by x = logy(y — 1) +1 

vz —1=logy(y—1) 
g=1=2"" 

oy = szl +1 

  F@) =24    
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EXERCISE 6H 

1 For each of the following functions f: 

i Find the domain and range. ii  Find any asymptotes and axes intercepts. 

iii - Sketch the graph of y = f(z), showing all important features. 

iv Solve f(x)= —1 algebraically and check the solution on your graph. 

v Find the inverse function f~*. 

a f:rax—logyr—2 b f:x—logg(z+1) ¢ frz—1—logg(z+1) 

d f:z—logs(z—2)—2 e f:rxr1—logs(z—2) f fraz—1-2log,z 

2 For each of the functions f: 

i State the transformation which maps y =1Inz to y = f(z). 

i State the domain and range. ili  Find any asymptotes and intercepts. 

iv  Sketch the graph of y = f(x), showing all important features. 

v Find the inverse function f~1. 

a f(z)=Inzx—-4 b f(z)=In(z—1)+2 ¢ f(z)=3mnz—-1 

3 Consider the curves A and B. One of them is the y 

graph of y = Inz and the other is the graph of 

y = In(z —2). 

a Identify which curve is which, giving evidence for 

your answer. 

b Copy the graphs onto a new set of axes, and then 

draw the graph of y = In(z + 2). 

  

¢ Find the equation of the vertical asymptote for 

each graph. 

4 Kelly said that in order to graph y = In(x?), x > 0, 

you could first graph y = Inz and then double the 

distance of each point on the graph from the x-axis. 

Is Kelly correct? Explain your answer. 

  

5 Draw, on the same set of axes, the graphs of: 

a y=Inz and y=In(2?) b y=Inz and y:ln(l) 
T 

¢ y=Inz and y=In(z+e) d y=Inz and y=In(z —2)-3 

e y=2lnz and y=In(2?) +2 

6 Suppose f(x)=be* and g(x)=In(bx). Find: 

a (fog)(x) b (go f)(x) 
¢ the value of z, in terms of b, for which (f o g)(z) = (go f)(x). 

7 Given f:x+e* and g:z+ 2v—1, find: 

a (flog)(x) b (gof)7H(2)
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  ACTIVITY 

Click on the icon to obtain a card game for logarithmic functions. CARD GAME 

  INVESTIGATION 3 

In a logarithmic scale, equally spaced major tick marks correspond to integer powers of a base 

number. We often call these orders of magnitude. 

For example, in the logarithmic scale 

alongside, each major tick mark 10—2 10— 10° 10! 102 

represents a power of 10. 

The minor tick marks correspond to integer multiples of each power of 10. So the minor tick marks 

between 10! and 102 represent 20, 30, 40, ...., and so on. 

  

Logarithmic scales are useful when we want to represent both very large and very small numbers on 

the same number line. They allow us to compare real world quantities or events which are many 

orders of magnitude apart. 

In this Investigation, we will explore the use of logarithmic scales in a variety of contexts. 

What to do: 

1 a For the logarithmic scale A B c 
{ alongside, state the values of i 1 1111l + Ll il L iy 

the points A, B, and C. 10 10% 10* 

b Explain why the minor tick marks in a logarithmic scale are not equally spaced. 

¢ Where is the value 0 on a logarithmic scale? Explain your answer. 

2 Musical notes are named according to the 

frequency of their sound waves. They 

are labelled with letters of the alphabet. 

A note which has twice the frequency of 

another is said to be one octave higher 
A|B|C|D|E|F|G|A|B than it. So, one C is an octave below the CID|E 

next C. fe——1 octave———»] 

a How many orders of magnitude apart are the 

frequencies of two notes separated by 3 octaves? 

  

          

. . “Middle C” has 
b Write an expression for the frequency of a Y S — 

musical note f, i}l terms of the number of fo = 261.6 Hz. 

octaves n above middle C. 

  

¢ There are 12 different notes in an octave. They 

are equally spaced on the logarithmic scale. Find 

the ratio of frequencies between two adjacent 

notes.
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In some situations, the logarithm is already applied to values placed on the number line. In 

these cases, the major tick marks represent the exponents rather than the numbers themselves. 

For example, suppose the scale alongside 

is logarithmic with base 10. The major A B © 

tick mark “2” represents the value 102, the | | | 
S 5 - 1l 41 | 

major tick mark “3” represents the value 1 0 1 2 3 

103, and so on. 

a How many times larger is the value at C than the value at B? 

b Estimate the position on the scale representing the value: 

i 10 times smaller than A ii twice as large as B. 

Earthquakes can range from microscopic tremors to huge natural disasters. The magnitude 

of earthquakes is measured on the Richter scale which relates to the energy released by the 

earthquake. For this logarithmic scale, the logarithm is part of the formula. It is calculated as 

M = log(li>, where I is the earthquake intensity and I is a reference intensity level. 
0 

a What does it mean for a tremor to have magnitude: io0 il 1? 

b Explain why an earthquake of magnitude 6 is not twice as intense as a magnitude 3 

earthquake. 

¢ Find the magnitude of an earthquake which has half the intensity of a magnitude 4 

earthquake. 

The acidity of a solution is determined by the concentration of hydronium ions (Hz0V). 

The higher the concentration of H30™, the more acidic it is. The opposite of acidic is alkaline. 

a In extremely acidic solutions, the concentration of H30O™ is typically more than 10~ units. 

In very alkaline solutions, it is usually less than 10~'2 units. 
Explain why a logarithmic scale would be useful in describing the acidity of a solution. 

b In chemistry, the pH scale is used to measure acidity. The pH of a solution is given by 

pH = —logC, where C is the concentration of H;O". Find: 

i the pH of a solution with H30" concentration 0.000 234 units 

ii the H3O™ concentration in a solution with pH 7. 

¢ Is it possible for a solution to have a negative pH? Explain what this means in terms of 

the concentration of H3O. 

6 Research the use of decibels in acoustics as a unit of measurement for loudness of sound. 

Compare the use of decibels to the scales in questions & and 5. 

REVIEW SET 6A 

  

1 Find: 

a log/10 b log(JE) ¢ log(10% x 10°+1) 

2 Find: 

a log, 64 b log, 256 ¢ log,(0.25) d logys 5 

e loggl f logg; 3 g logy(3) h log, VE
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10 

12 

13 

14 

15 

16 

17 

Use your calculator to evaluate, correct to 3 decimal places: 

a log27 b log(0.58) ¢ log400 d In40 

Simplify: 

a 4In2+2In3 b 1In9—In2 ¢ 2In5-1 d 1n81 

Write as a single logarithm: 

a logl6+2log3 b log, 16 — 2log, 3 ¢ 2+log, b 

Suppose A =log; 2 and B =log; 3. Write in terms of A and B: 

a log; 36 b log; 54 ¢ log;(8v3) 

d log;(/06) e log;(20.25) f log; (%) 

Write as a logarithmic equation: 
W _ 5 _ a’b 

a M=ab bT—% cG_T 

Solve for x: 

a 3% =300 b 30x5'7%=0.15 S s 

Solve exactly for x: 

a e =3e” b ¥ —T7e+12=0 

Write without logarithms: 

a mWP=15nQ+InT b mnM=12-05InN 

Solve for x: 

a 3" —5=—27 b 21nx—31n<l>=10 
x 

Find z if: 

a log,z=-3 b logs x ~ 2.743 ¢ logsz~ —3.145 

Solve for x: i exactly ii rounded to 2 decimal places. 

a 2% =50 b 7=4 ¢ (0.6)* =0.01 

Suppose log, b = . Find, in terms of z, the value of log, (%) 

Show that the solution to 16 —5 x 8 =0 is z = log, 5. 

Solve for x, giving exact answers: 

a lnz=5 b 3lnz+2=0 ¢ e =400 
x 
2 d e+l =11 e 25¢2 =750 

Consider f(x) = e~ + 1. 

In(z —1)+4 
a Show that f~l(z) = 3 

b Calculate f=1(8) — f~%(3). Give your answer in the form alnb, where a, b€ Q*.



170 

18 

19 

21 

23 

LOGARITHMS  (Chapter 6) 

Consider the function g : z +— logs(z +2) — 2. 

a State the transformation which maps y =logsz to y = g(x). 

b Find the domain and range. 

¢ Find any asymptotes and axes intercepts for the graph of the function. 

d Find the inverse function g—'. 

=i e Sketch the graphs of g, ¢, and y =2 on the same set of axes. 

The weight of a radioactive isotope remaining after £ weeks is given by 
t 

W; = 8000 x e 2° grams. Find the time for the weight to: 

a halve b reach 1000 g ¢ reach 0.1% of its original value. 

A population of seals is given by P(t) = 80x (1.15)" 
where ¢ is the time in years, ¢ > 0. 

a Find the time required for the population to 

double in size. 

b Find the percentage increase in population during 

the first 4 years. 

  

For each of the following functions: 

i State the domain and range. 

ii Find any asymptotes and axes intercepts. 

jii Sketch the graph of the function, showing all important features. 

a f(z) =logy(z+4)—1 b f(z)=Inz+2 

Draw, on the same set of axes, the graphs of: 

a y=Inz and y=In(z —3) b y=Inz and y=2Inz 

Consider f(z) =e* and g(z) =In(z+4), > —4. Find: 

a (fog)5) b (g0 f)(0) 

AT AN   

1 

3 

4 

Without using a calculator, find the base 10 logarithms of: 

    a /1000 31‘1)0 c lto_ab 

Find: 

a log, 128 b logy (%) < logs(fi) 

Write in the form 10%, giving x correct to 4 decimal places: 

a 32 b 0.0013 ¢ 8.963 x 107° 

Find: 

a In(e\/e) b ln(e%) ¢ In(e?®) d ln(%) 
€
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5 

6 

7 

9 

10 

1 

12 

13 

14 

15 

16 

17 

      

  

Simplify: 

logs 25 b log 64 logs 81 

logy 125 log 32 logs /3 

Simplify: 

alcaltd b In(e®) ¢ In(y/e) 

d 1gvseHoss e m(L) ¢ lost?) 
@& logz 9 

Write in the form e®, where x is correct to 4 decimal places: 

a 20 b 3000 ¢ 0.075 

Solve for x: i exactly ii rounded to 2 decimal places. 

a 5 = b 27 =0.1 

Write as a single logarithm: 

In60 — In 20 b In4+1Inl 

Solve for x, giving exact answers: 

e =170 b 3x (1.3)* =11 

What is the only value of x for which logz = Inx? 

Write as a logarithmic equation: 
3 

R b m="5 
P 

Show that logs 7 x 2log; = 2log; . 

Write the following equations without logarithms: 

logT = 2logz —logy 

¢ In200 —In8+1Inbd 

¢ 5x20% =16 

b log, K =logyn+ 3logyt 

Write in the form alnk where a and £ are positive whole numbers and £ is prime: 

Copy and complete: 

b Hence find the exact solution of 27(2% — 1) = 20. 

In 32 b In125 ¢ In729 

  

  

  

Factorise 4% — 2% — 20 in the form (2% 4 a)(2® — b) where a, b€ Z™. 

Suppose p = logs 2. 

i Write the solution to b in terms of p. 

ii Find the solution to 8* = 5'=% in terms of p only. 

Consider ¢:x — 2e* — 5. 

b 

< 

d 

Find the inverse function g~ 

Sketch the graphs of g and g—! on the same set of axes. 

State the domain and range of g and g—!. 

State the asymptotes and intercepts of g and g~ . 1
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The temperature of a mug of water ¢ minutes 

after it has been poured from a kettle is given by 

T = 60e~ 1" + 20 °C. 
Show that it will take 10In3 minutes for the 

temperature of the water to fall to 40°C. 

  

The weight of a radioactive isotope after ¢ years is given by W () = 2500 x S_fi grams. 

a Find the initial weight of the isotope. 

b Find the time taken for the isotope to reduce to 30% of its original weight. 

¢ Find the percentage of weight lost after 1500 years. 

Solve for z, giving an exact answer: 

a 5§=9 b e* =30 ciCE ) 

Draw, on the same set of axes, the graphs of: 

a y=Inz and y=In(z+2) b y=Inz and y=In(ex) 

Hick’s law models the time taken for a person to make a selection from a number of possible 

options. 

For a particular person, Hick’s law determines that the time taken to choose between n equally 

probable choices is 7= 21n(n + 1) seconds. 

a Sketch the graph of 7" against n for 0 < n < 50. 

b How long will it take this person to choose between: 

i 5 possible choices ii 15 possible choices? 

¢ If the number of possible choices increases from 20 to 40, how much longer will the person 

take to make a selection?



  

The unit circle and 

radian measure 

Contents: 

  

A 
B 

C 
D 

E 
F 

G 

Radian measure 
Arc length and sector area 

The unit circle 
Muiltiples of & and % 

The Pythagorean identity 

Finding angles 

The equation of a straight line
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OPENING PROBLEM 

Consider the triangles below: 

o
 

  

Things to think about: 

a Triangle ABC is an equilateral triangle with sides 2 cm long. Altitude [AN] bisects side [BC] 

and the vertical angle BAC. 

Can you use this figure to find: 

i sin30° ii cos60° iii cos30° iv sin60°? 

b Triangle PQR is a right angled isosceles triangle with hypotenuse /2 cm long. 

Can you use this figure to find: 

i cos45° ii sin4b° iii tan45°? 

In this Chapter we build on our knowledge of angles and trigonometry. We consider: 

e radian measure as an alternative to degrees 

e the unit circle which helps us give meaning to the trigonometric ratios for any angle. 

CNE RADIAN MEASURE 
DEGREE MEASUREMENT OF ANGLES 

We have seen previously that one full revolution makes an angle of 360°, 

and the angle on a straight line is 180°. Hence, one degree, 1°, can 

be defined as fith of one full revolution. This measure of angle is 

commonly used by surveyors and architects. 

  

For greater accuracy we define one minute, 1/, as %th of one degree and one second, 1”, as %th of 

one minute. Obviously a minute and a second are very small angles. 

Most graphics calculators can convert fractions of angles measured in degrees 

into minutes and seconds. This is also useful for converting fractions of hours 
) 

. . . . . RAPHI into minutes and seconds for time measurement, as one minute is %th of one CALCULATOR 
. . INSTRUCTIONS 

hour, and one second is %th of one minute.
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RADIAN MEASUREMENT OF ANGLES 

Around 1400 AD, the Persian mathematician Al-Kashi began measuring angles according to the length 

of the arc of a circle that the angle subtends. This idea was developed into radian measure by the 

Englishman Roger Coates in 1714. The word “radian” is an abbreviation of “radial angle”. 

Suppose the arc length formed by an angle is the same 

length as the radius. This angle is said to have a measure 

of 1 radian (1°). 

1“¢” i The symbo is used for radian measure but is usually omitted. 

By contrast, the degree symbol is always used when the measure 

of an angle is given in degrees. 

From the diagram to the right, it can be seen that 1¢ is slightly 

smaller than 60°. In fact, 1°~ 57.3°. 

DEGREE-RADIAN CONVERSIONS 

Consider a semi-circle of radius . The arc length is 77, so there 

are 7 radians in a semi-circle. 

Therefore, 7 radians = 180°. 

So, 1¢= (182)° ~ 57.3° and 1° = (&) =~ 0.0175%. 

To convert from degrees to radians, we multiply by 155- 

180 To convert from radians to degrees, we multiply by 

X 
180 

Degrees Radians 

TN 

e 

  

DEMO 

  

mr 

We indicate degrees 

with a small °. 

To indicate radians we 

use a small ¢ or else 

use no symbol at all.
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e ) Self Tutor 

Convert 45° to radians, in terms of 7. 

  

Angles in radians 45° = (45 x %) radians  or 180° = 7 radians 
may be expressed 180 

S 1 o 180\° _ o 5 A = Z radians oo (182)° = Z radians cither in terms of 4 

: 7 or as decimals. 
. 45° = Z radians 

Example 2 ) Self Tutor 

Convert 126.5° to radians. 

  

126.5° 

= (126.5 x %5) radians 

~ 2.21 radians 

  

EXERCISE 7A 

1 Convert to radians, in terms of 7: 

a 90° b 60° c 30° d 18° e 9° 

f 135° g 225° h 270° i 360° i 720° 

le 315° I 540° m 36° n 80° o 230° 

2 Convert to radians, correct to 3 significant figures: 

a 36.7° b 137.2° ¢ 317.9° d 219.6° e 396.7° 

[ LR o) Self Tutor 

Convert to degrees: 

a %?' 0.638 radians. 

0.638 radians 

= (0.638 x 182)° 
T 

~ 36.6° 

  

3 Convert to degrees: 

ud 37 3 s ud 
a 5 b 5 < 4 d 18 e 9 

T s 3 P In i 
5 3 1o h 55 5 I 

4 Convert to degrees, correct to 2 decimal places: 

a 2 b 1.53 ¢ 0.867 d 3.179 e 5.267
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5 Match each angle measurement with the correct diagram: 

a 70° b 2¢ z d 200° e 3° f 05 €3 

| [ j | @ | 

D ; E F AN 

6 Copy and complete, giving answers in terms of 7: 

b | Degrees | 0 

Radians 

You should have previously seen formulae for the length of an arc and 

the area of a sector, for an angle given in degrees. 

  

  

  

60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 | 360 
  

                          
  

R AREA   

For a sector with radius r and angle 6 given in degrees, 

arc length I = o X 27T 
360 

0 2 area A = — X 7T 
360 

However, if the angle 6 is measured in radians, the formulae become much simpler. 

e @ measures how many times longer the arc length is than the radius. 

g—L 
r 

l=06r 

e There are 27 radians in a circle so 

0 
area of sector = X area of circle 

X 7T7‘2 

2 

A=2 
27 

A= %67"2
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For a sector with radius 7 and angle 6 given in radians, 

arc length [ = Or 

area A = %07‘2 

Example 4 O AR (T8 

A sector has radius 12 cm and angle 3 radians. Find its: 

a arc length 

  

a arc length = 0r b area = 10r? 

i;;12 =1x3x12? 

—ovem =216 cm® 
  

EXERCISE 7B 

1 Find the arc length of each sector: 

a b < 

7cm 6.2m 

2 Find the area of each sector: 

a b < 

2cm D ‘ 5.6cm 
8cm 

3 Find the arc length and area of a sector of a circle with: 

a radius 9 cm and angle %" b radius 4.93 cm and angle 4.67 radians. 

  

Example 5 ) Self Tutor 

A sector has radius 8.2 cm and arc length 12.3 cm. Find its: 

a angle b area. 

I =0r {0 in radians} 

0= - 1.5 radians 
8.2 T 

  
4 Find, in radians, the angle of a sector of: 

a radius 4.3 m and arc length 2.95 m b radius 10 cm and area 30 cm?.
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5 Find 0 (in radians) for each of the following, and hence find the area of each figure: 

C 31.7cm 

aGCm/ 8cm b 5(:m 

| ‘ 

6 A sector has an angle of 1.88 radians and an arc length of 5.92 m. Find its: 

a radius b area. 

7 A sector has an angle of 1.19 radians and an area of 20.8 cm?. Find its: 

a radius b perimeter. 

The end wall of a building has the shape illustrated, where 

the centre of arc AB is at C. Find: 

a « in radians to 4 significant figures 

b 0 in radians to 4 significant figures 

¢ the area of the wall. 

  

9 In the given figure, the perimeter of sector OAB is (12 + 27) cm. 

   
    

A 

a Find 6. 

b Hence state the length of the chord [AB]. 

10 The cone 4\ is made from this sector: 

scm 

12cm —Pl 

rcm 

Find, correct to 3 significant figures: 

a the slant length s cm b the value of r 

¢ the arc length of the sector d the sector angle 0 in radians. 

1 T [AT] is a tangent to the given circle. OA = 13 cm and the 

circle has radius 5 cm. Find the perimeter of the shaded 

region.



180  THE UNIT CIRCLE AND RADIAN MEASURE ~ (Chapter 7) 

12 A nautical mile (nmi) is the distance on the Earth’s surface 1 nautical mile (nmi) 

that subtends an angle of 1 minute (or 6—10th of a degree) of 

the Great Circle arc measured from the centre of the Earth. 

A Kknot is a speed of 1 nautical mile per hour. 

a Given that the radius of the Earth is 6370 km, show 

that 1 nmi is approximately 1.853 km. 

b Calculate how long it would take a plane to fly 2130 km 

from Perth to Adelaide if the plane can fly at 480 knots. 

  

13 fence A sheep is tethered to a post which is 6 m from a long 

? fence. The length of the rope is 9 m. Find the area which 

6m the sheep can feed on. 
! post Mfieep 

14 Two semi-circles touch each other within a quarter circle 

as shown. P, Q, and R are collinear. The radius of the 

quarter circle is 12 cm. 

a Find the radius of the smaller semi-circle. 

b Calculate the area of: 

i A ii B. P area B 

0 A 

T area A S R 

  THEORY OF KNOWLEDGE 

There are several theories for why one complete turn was divided into 360 degrees: 

e 360 is approximately the number of days in a year. 

e The Babylonians used a counting system in base 60. If 

they drew 6 equilateral triangles within a circle as shown, / \ 

and divided each angle into 60 subdivisions, then there were 

360 subdivisions in one turn. The division of an hour into 

60 minutes, and a minute into 60 seconds, is from this base <> 

60 counting system. 

e 360 has 24 divisors, including every integer from 1 to 10 

except 7. 

By contrast, we have seen how radians are convenient in simplifying formulae which relate angles 

with distances and areas.
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1 Which angle measure do you think is more: 

a practical b natural ¢ mathematical? 

2 What other measures of angle are there, and for what purpose were they defined? 

3 Which temperature scale, Celsius, Kelvin, or Fahrenheit, do you think is more: 

a practical b natural? 

4 What other measures have we defined as a way of convenience? 

5 What things are done differently around the world, but would be useful to globally 

standardise? For example, why are there different power voltages in different countries? 

Why have they not been standardised? 

6 What things do we measure in a particular way simply for reasons of history rather than 

practical purpose? 

I3 B THG UNIT CIReLs 
When we introduced non-right angled triangle trigonometry, we used the unit circle to give meaning to 

the trigonometric ratios for obtuse angles. We now extend these definitions to include a// angles. 

The unit circle is the circle with 

centre (0, 0) and radius 1 unit. 

The equation of the unit circle is 

22 +y? =1 

  

DEFINITION OF SINE AND COSINE 

If P is any point on the unit circle such 

that [OP] makes an angle # measured 

anticlockwise from the positive z-axis: 

e cos0 is the z-coordinate of P 

e sin@ is the y-coordinate of P 

  

For all points on the unit circle, —1 <2 <1, —1 <y <1, and 2>+ 5> = 1. We therefore conclude: 

For any angle 6: 

o —1<cosf<1 and —1<sinf<1 

e cos?20 +sin?0 =1
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DEFINITION OF TANGENT 

Suppose we extend [OP] to meet the tangent from A(L, 0). 

We let the intersection between these lines be point Q. 

Note that as P moves, so does Q. 

The position of Q relative to A is defined as the tangent 

function. 

Notice that triangles ONP and OAQ are equiangular and 

therefore similar. 

Al NP Al in6 
Consequently AQ _ NP and hence AQ _ sin 

OA ON 
  

  

  

  

cosf’ tangent 

. sin 6 
Under the definition that AQ = tan6, tanf = . 

cos 6 

Since [OP] has gradient Sinz, we can also say that tan 6 is the gradient of [OP]. 
COs 

INVESTIGATION   

In this Investigation we explore the signs of the trigonometric ratios in each quadrant of the unit 

circle. 

What to do: THE UNIT 
CIRCLE 

1 Click on the icon to run the Unit Circle software. 

Drag the point P slowly around the circle. 

Note the sign of each trigonometric ratio in each quadrant. 

1 positive 

2 

3 

4 

2 Hence write down the trigonometric ratios which are positive for each quadrant. 

  

From the Investigation you should have discovered that: 

e sind, cos, and tan @ are all positive in quadrant 1 

e only siné is positive in quadrant 2 

e only tanf is positive in quadrant 3 

e only cosf is positive in quadrant 4. 

We can use a letter to show which trigonometric ratios are 

positive in each quadrant. The A stands for all of the ratios. 

  
You might like to remember them using 

All Silly Turtles Crawl.
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PERIODICITY OF TRIGONOMETRIC RATIOS 

Since there are 27 radians in a full revolution, if we add any integer multiple of 27 to 6 (in radians) then 

the position of P on the unit circle is unchanged. 

For 6 in radians and k € Z, 

cos (0 + 2kmw) = cos@ and sin (6 + 2kw) = sin 6. 

We notice that for any point (cosf, sinf) 
on the unit circle, the point directly opposite 

is (—cosf, —sinb). 

cos(0 + m) = —cosf 

sin(f + m) = —sinf 

and tan(@ +7) = — S0 _ ang     

  

For 6 in radians and k € Z, tan(0 + km) = tané. 

CALCULATOR USE 

When using your calculator to find trigonometric ratios for angles, you must 

make sure your calculator is correctly set to either degree or radian mode. 
GRAPHICS Click on the icon for instructions. CALCULATOR 

INSTRUCTIONS 

Example 6 o) Self Tutor      
    

       

  

a State the exact coordinates of P and Q in terms of sine 

and cosine. 

b Use your calculator to give the coordinates of P and Q 

correct to 3 significant figures. 

  

  

Casio fx-CG50    

    

   

a Pis (cos157°, sin157°), 

Qis (cos(—72°), sin(—72°)). 0 is positive for 

b P~ (—0.921, 0.391) i -0.9205048535 anticlockwise rotations, 

= e and negative for 
Q ~ (0.309, —0.951) et clockwise rotations. 

g 0.3090169944  
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EXERCISE 7C 

1 With the aid of a unit circle, complete the following table: 

  

  

  

  

  

  tangent 
  

2 For each unit circle illustrated: 

i State the exact coordinates of points A, B, and C in terms of sine and cosine. 

ii  Use your calculator to give the coordinates of A, B, and C correct to 3 significant figures. 

   
i 5 i 2 

b Copy and complete the following table. Use your calculator to evaluate the trigonometric ratios, 

then a to write them exactly. 

L a Copy and complete: 

Quadrant | Degree measure | Radian measure | cos6 sin 0 

1 positive | positive 

2 

b In which quadrants are the following true? 

  

  

  

  

  

  
  

  

  

  

  

i cosf is positive. ii cos@ is negative. 

iil  cos® and sin @ are both negative. iv cos@ is negative and sin 6 is positive. 

5 Explain why: 

a cos400° = cos40° b sin 2T =gin ¢ ¢ tan T = tan(— 12%”)
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6 Which two of these have the same value? 

A tan15° B tan50° € tan200° D tan230° E tan300° 

7 Which two of these have the same value? 

A sin220° B sinZr C sin(—2) D sin120° E sind0° 

8 a Use your calculator to evaluate: 

i sin100° i sin80° i sin120° iv sin60° 

v sin150° vi sin30° vii sin45° viii  sin 135° 

b Use the results from a to copy and complete:  sin(180° — 0) = ...... 

n Write the rule you have just found in terms of radians. 

d Justify your answer using the diagram alongside: 

e Find the obtuse angle with the same sine as: 

i 45° i 510 i I v I 

  

9 a Use your calculator to evaluate: 

i cos70° i cos110° il cos60° v cos120° 

Vv cos25° vi cos155° vii  cos80° viii  cos 100° 

b Use the results from a to copy and complete: cos(180° — ) = ...... 

n Write the rule you have just found in terms of radians. 

d Justify your answer using the diagram alongside: 

e Find the obtuse angle which has the negative cosine of: 

i 40° it 19° ili % v & 
5 5 

  

sin 6 
  10 Use the definition tanf = 

tand. 

7 and your results from 8 and 9 to write tan(w — 0) in terms of 
cos 

11 Without using your calculator, find: 

a sinl137° if sin43° & 0.6820 b sin59° if sin121° ~ 0.8572 

¢ cos143° if cos37° ~ 0.7986 d cos24° if cos156° =~ —0.9135 

e sin115° if sin65° ~ 0.9063 f cos132° if cos48° = 0.6691 

  
b What trigonometric formulae can be deduced from your results in a?
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¢ The coordinates of P in the figure are (cosd, sin@). 

By finding the coordinates of Q in terms of # in two 

different ways, prove your formulae in b. 

d Hence explain why 

cos(2m — 6) = cos 

and sin(27 — 0) = —sind. 

e Write tan(2m —0) in terms of tand. 

13 a Explain why P has coordinates 

(cos(5 —0), sin(5 —0)). 

  

b Show that: 

i XP =siné il OX = cosf 

¢ Hence, copy and complete: 

i cos(§—0)=... i sin(f —0)=.... 

d Check your answer to ¢ by calculating: 

i cosZ and siniZ i sinZ and cosZZ. 

e Write tan(Z —6) in terms of tan 0. 

DISCUSSION 

  

In the previous Exercise you should have proven the following trigonometric identities: 

cos(180° — 0) = —cosf | cos(m —0) = —cosO 

sin(180° — 0) = sin @ sin(m — 0) = sind 

tan(180° — 0) = —tanf | tan(m —60) = —tané 

cos(—0) = cos @ cos(—0) = cosd 

sin(—0) = —sin @ sin(—6) = —sind 

tan(—0) = — tan tan(—0) = —tané 

cos(90° — 6) = sind 

sin(90° — ) = cos 6 
1 

- = — tan(90° — 6) — 

  

e What do we mean by the word “identity”? 

e Why are identities important? 

e What other identities do we use?
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DI wnmsors o 
Angles which are multiples of & and 7 occur frequently in geometry, so it is important for us to write 

their trigonometric ratios exactly. 

MULTIPLES OF 7 OR 45° 

Consider 0 = 45°. 

Angle OPB also measures 45°, so triangle OBP is isosceles. 

welet OB=BP=a 

  

Now a? +a?=1° {Pythagoras} 

a2 =1 2 
a= fi {since a >0} 

. 11 1. Pis (E’ fi) where 7~ 0.707. 

So. cosp = and sinf =% 

We can now find the coordinates of all points on 

the unit circle corresponding to multiples of % by 

symmetry. 

  
MULTIPLES OF % OR 30° 

Consider 6 = 60°. 

Since OA = OP, triangle OAP is isosceles. 

Now AOP = 60°, so the remaining angles are therefore 

also 60°. Triangle AOP is therefore equilateral. 

The altitude [PN] bisects base [OA], so ON = 3. 

IfPis (3, k), then (3)*+i*=1 

k=2 {since k> 0} 

Pis ( ,@) where lzéz[].866. c » 

So, cos T = % and sin % = @ 
1/301 5 

2 

Now NPO = & =30°. Hence cos % = 4 and sin% = % 0o 

N O 

  

Lo
l 

1 
2
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  DISCUSSION 

You should remember the values of cosine and sine 
s o m for angles %o o and % 

However, if you forget, you can use these diagrams 

to quickly generate the results. V2 1 

Discuss how you can do this. O 

  

We can now find the coordinates of all points on 

the unit circle corresponding to multiples of & by 

symmetry. 

  

SUMMARY 

  o For multiples of 7, the coordinates of the points on the unit circle involve 0 and +1. 

@, 1 
2 o , the coordinates involve 7 e For other multiples of 5 

e For other multiples of %, the coordinates involve % and fig         

  

LR R T 

Find the exact values of sina, cosa, and tana for: 

   



THE UNIT CIRCLE AND RADIAN MEASURE  (Chapter 7) 
  

EXERCISE 7D 

1 Use a unit circle diagram to find exact values for sinf, cos@, and tan® for 6 equal to: 

iy 3 i 3m 
a T b T < T d 7 e - 

2 Use a unit circle diagram to find exact values for sin/3, cos/3, and tan(3 for § equal to: 

x 2 ix 5 i 
a g b3 < T d 3 e 5 

3 Find the exact values of: 
o 2T iy 270 2 . ™ : ™ ™ a cosZ, sinZ, and tan 2L b cos(—Z), sin(—%), and tan(—%) 

4 a Find the exact values of cos§ and sin 7. 

b What can you say about tan 5? 

Example 8 «) Self Tutor 

Without using a calculator, show that 8sin % cos %’“ = —6. 

  

inT — V3 st _ V3 sin = %> and cos g = —% 

sin T cos 8F — 8sin % cos <F = 

=2(-3) 

  

  

5 Without using a calculator, evaluate: 

a sin? (%) b sin§cos & ¢ 4sinfcos g 

d 1—cos’(%) e sin®(%) -1 f cos?(F) —sin 2 

g sin2T —cos 3L h 1-—2sin? (%") i cos?(3F) — sinQ(%‘) 

9 . 2tan‘%’r 
j tan (%) — 2sin? (%) k 2tan(f5T”) 7sm377' 1 = 

1 —tan2(%) 

Check all answers using your calculator. 

Example 9 o) Self Tutor 

Find all angles 0 < 6 < 27 with a cosine of % 

  

Since the cosine is %, we draw the 

vertical line z = 1. 

1 Because 5 is involved, we know the 

required angles are multiples of . 

5 They are % and <. 
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6 Find all angles between 0 and 27 with: 

a asine of & b asine of 22 ¢ a cosine of 2= 2 5 7 

d a cosine of —3 e a cosine of 7% f asine of 732§ 

7 Find all angles between 0 and 27 (inclusive) which have a tangent of: 

1 a1l b -1 ¢ V3 d o e 7= f -3 

8 Find all angles between 0 and 47 with: 

a a cosine of —@ b a sine of 7% ¢ asine of —1 

9 Find 0 if 0<0 <27 and: 

a 0050:% b sin@z@ ¢ cosf=-1 d sinf=1 

e 0039:7% f sin®0=1 g cos’f=1 h cos’0 =1 

i tanG:f% j tan’0=3 

10 Find all values of 6 for which tan@ is: 

a zero b undefined. 

[ I THE PYTHAGOREAN IDENTITY 
From the equation of the unit circle 22 +y? =1, we obtain the Pythagorean identity: 

For any angle 6, cos?6 + sin?6 = 1. 

We can use this identity to find one trigonometric ratio from another. 

  

Example 10 «) Self Tutor 

Find the possible exact values of cosf for sinf = % Tllustrate your answers. 

cos? 0 +sin? 0 =1 

cos? 0 + (%)2 =S 

cos?f = 2 

  cosf = 

  

  

EXERCISE 7E 

1 Find the possible exact values of cos @ for: 

a Sin€=% b Sin€=—% ¢ sinf=0 d sinf =-1 

2 Find the possible exact values of sin § for: 

a 0050:% b cosezfg ¢ cosf=1 d cosf =0
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If sinf=-3 and 7 <6 < 3L, find cosf and tanf. Give exact values. 
     

   

       

   

  

Now cos?6 +sin?6 =1 

cos29+1%:1 

20 _ T cos™ 0 = 15 

  cosf = ::4 

But 7 <6< 3X 55, S0 0 is a quadrant 3 angle. 

cosf is negative. 

  

      
  

   
   
      

3 
0 7 L 

cosf = 7345 and tanf = osb 7 

1 

Without using a calculator, find: 

sin 6 ifcosé’:%and 0<0<3% cos 0 ifsin@:%an F<O<m 

cosf if sin9=—% and 37"<0§’<27r sinf if cosé’:—fi3 and 7 <0< 

Find tanf exactly given: 

sinf=3 and 3 <0<m cosf=1% and 3F <0 <27 

sin9:771§ and 7 <0< 3 cosf=—3 and T <0<, 

Example 12 ) Self Tutor 

If tanf = —2 and 37” < 0 < 2w, find sinf and cos6. Give exact answers. 

  

  

  

  
  

tanf = sinf _ -2 
cos 6 

sinf = —2cosf 

Now sin?6+cos?6 =1 

o (=2c080)? +cos?0 = 1 

4cos? 0+ cos?0 =1 

5cos20 =1 

cosf = ::\}g 

But 37” < 0 < 2m, so 0 is a quadrant 4 angle. 

cos @ is positive and sinf is negative. 

cosfh = —-= and sinf = —-2       

Find exact values for sin# and cos 6 given that: 

tand =2 and 0<0<Z tanf=—3 and T <6<t 

tan€:33@ and 7r<9<3‘7’r tanf = —12 and 37”<9<27r
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6 Suppose tanf =k where k is a constant and 7 < 6 < 577‘ Write expressions for sin 6 and cos 6 

in terms of k. 

GHE FINDING ANGLES 
In Exercise 7C you should have proven that: 

For 6 in degrees: For 6 in radians: 

e sin(180° — @) =sin6 e sin(w — ) =sinf 

e cos(180° — 0) = —cos @ e cos(m —0) = —cosb 

e c0s(360° — 6) = cosf e cos(2m — @) = cos 6 

e sin(360° —0) = —sin6 e sin(2w —0) = —sinb 

We need results such as these, and also the periodicity of the trigonometric ratios, to find angles which 

have a particular sine, cosine, or tangent. 

  

Example 13 ) Self Tutor 

Find the two angles 6 on the unit circle, with 0° < 6 < 360°, such that: 

a cos@:% b sin():% ¢ tanf =2 

  

a Using technology, cos™! (%) ~ 70.53° 

   
s 0=70.53° or 360° — 70.53° . 0 ~48.59° or 180° — 48.59° 

. 0=70.5° or 289.5° . 0 ~48.6° or 1314° 

¢ Using technology, tan—!(2) =~ 63.43° 

For positive cos 6, sin 6, or tan 6, 

your calculator will give the acute angle 6. 

  

. 0 ~6343° or 180° + 63.43° 

. 0~634° or 243.4°     
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EXERCISE 7F 

1 Find two angles 6 on the unit circle, with 0° < § < 360°, such that: 

a tanf =4 b cosf =0.83 ¢ sinf = % 

d cosf=0 e tanf = 6.67 f cost = % 

2 Find two angles 0 on the unit circle, with 0 < 6 < 27, such that: 

a tanG:% b cosf = 7’ ¢ sinf =0.61 

d cosf=1% e tanf =0.114 fosind =1 

  

Find two angles 6 on the unit circle, with 0 < 6 < 27, such that: 

  

   a sinf=—04 b cosf=-2 ¢ tanf = —% 

      a Using technology, sin™!(—0.4) ~ —0.412 
If sin 6 or tan 6 is negative, your 

calculator will give 6 in the 

domain —5 < 6 < 0. 

If cos 0 is negative, your calculator 

will give the obtuse angle 6. 

The angles given by your 

calculator are shown in green.    
But 0<6 <27 

0 ~m+0412 or 2w —0.412 

6~ 3.55 or 5.87 \‘ 

  

0 

T 

2 ~ .82 or 5.96 

  

    
3 Find two angles 6 on the unit circle, with 0 < 6 < 27, such that: 

a cos():—% b sinf=0 ¢ tanf = —3.1 d sinf = —0.421 

e tanf =12 f cosf =0.7816 g sin0=1—11 h cosG:—%
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4 Find all 0 such that —180° < 6 < 180° and: 

a cosf=—15 b sinf = 

d cosf =08 e tanf =—2 f sinf=— 

[ N THE EGQUATION OF A STRAIGHT LINE 
If a straight line makes an angle of 6 with the positive x-axis then its gradient is m = tan6. 

I le
o 

¢ tanf = — 

o 

Sl
 

Proof: e For m>0: . 

   
    Gradient m = 2==° Gradient m = 220 
a—0 a—0 

b b 

T TG 
= tanf = —tan(m — ) 

= tanf 

13 TR LR R ML 

Find the equation of 

the given line: 

  

The line has gradient m = tan § = % and y-intercept 1. 

the line has equation y = %z +1. 

  

EXERCISE 7G 

1 Find the equation of each line: 

a y b 

60°  
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2 Find the equation of each line: 

a y b y < y 

[)
 

=I
E]

 

ol 

Do
 ) 

ol 

  

  

Example 16 

Find, in radians, the measure of 6: 

  

  

The line has gradient —%, so tanf = —3. 

Using technology, tan~!(—1)~ —0.464 

But 0<f0<m, so ~m—0.464 ~ 2.68 
  

3 Find, in radians, the measure of 6: 

a 

  

4 Find, in degrees, the measure of 6: 

  

  
  

    
  REVIEW SET 7A 

1 Convert to radians in terms of 7: 

a 120° b 225° ¢ 150° d 540°
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1 

12 

13 

14 

15 

16 

17 
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Convert these radian measurements to degrees: 

2 5 7 11 
a 5 > 7 <5 d 5 

Illustrate the quadrants where sinf and cos@ have the same sign. 

Determine the coordinates of the point on the unit circle corresponding to an angle of: 

a 320° b 163° ¢ 0.68° 

Find the arc length of a sector with angle 1.5 radians and radius 8 cm. 

Find the acute angles that have the same: 

a sine as QT" b sine as 165° ¢ cosine as 276°. 

Find: 

a sinl159° if sin21° ~ 0.358 b c0s92° if cos88° ~ 0.035 

¢ cos75° if cos105° ~ —0.259 d tan(—133°) if tan47° ~1.072. 

Use a unit circle diagram to find: 

a cos360° and sin360° b cos(—m) and sin(—m). 

Find exact values for sinf, cosf, and tanf for 6 equal to: a 2—;’ b %’“ 

P a State the value of 0 in: 

i degrees ii radians. 

b State the arc length AP. 

A ¢ State the area of the minor sector OAP. 

If sinz = 7% and T <z < 37”, find tanz exactly. 

If cosf = %, find the possible values of sin 6. 

Evaluate: 
: 2 2 2 a 2sinfcosy b tan (%) -1 ¢ cos (%) — sin (%) 

Given tanz = —2 and 2T < <2m, find: 

a cosx b sinz. 

Find the perimeter and area of the sector. 

4cm 

Suppose cosf = \/3% and 0 is acute. Find the exact value of tan6. 

Find two angles on the unit circle with 0 < 6 < 27, such that: 

1 
1 a cosf=2 b sinf=— : ¢ tanf =3
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18 Find the equation of each line: 

a y b y 

oA
 

  

REVIEW SET 7B   

1 Convert to radians, to 4 significant figures: 

a 71° b 124.6° ¢ —142° 

2 Convert to degrees, to 2 decimal places: 

a 3¢ b 1.46 ¢ 0.435° d 5271 

3 Determine the area of a sector with angle 5{—’2“ and radius 13 cm. 

4 Find the coordinates of the points M, N, and P on the 

unit circle. 

  

5 Find the angle [OA] makes with the positive xz-axis if the z-coordinate of the point A on the 

unit circle is —0.222. 

6 Find the radius and area of a sector of perimeter 36 cm with an angle of %’“ 

7 Use a unit circle diagram to find: 

a cos3 and sin3f b cos(—%) and sin(—%) 

8 Suppose m =sinp, where p is acute. Write an expression in terms of m for: 

a sin(m —p) b sin(p + 27) ¢ cosp d tanp 

9 Find all angles between 0° and 360° which have: 

a a cosine of 7325 b a sine of % ¢ a tangent of ) 

10 Find 0 for 0 <6 <27 if: 

a cosf =-—1 b sin20=2 

11 Find the obtuse angles which have the same: 

a sine as 47° b sine as 7 ¢ cosine as 186° 

12 Find the perimeter and area of a sector with radius 11 cm and angle 63°.
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13 Show that cos %” — sin ST” = V2. 

14 If cosf = 7%, % <0 <7 find the exact value of: 

a sind b tand ¢ cos(m —0) 

15 Without using a calculator, evaluate: 

a tan?60° — sin? 45° b cos?(%) +sing 

¢ cos 3 — tan 3¢ d tan?(3F) 

16 Explain how to use the unit circle to find @ when cosf = —sinf, 0 < 6 < 2m. 

17 Find, in radians, the measure of 0: 

a y b y 

    
—z __5 ¥=3 y=—3z 

18 Three circles with radius r are drawn as shown, each 

with its centre on the circumference of the other two A 

circles. A, B, and C are the centres of the three circles. 

Prove that an expression for the area of the shaded " 
2 ‘ 

region is A = %(77 —/3). v
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  OPENING PROBLEM 

A Ferris wheel rotates anticlockwise at a constant 

speed. The wheel’s radius is 10 m and the bottom 

of the wheel is 2 m above ground level. From his 

viewing point next to the ticket booth, Andrew is 

watching a green light on the perimeter of the wheel. 

He notices that the green light moves in a circle. It 

takes 100 seconds for a full revolution. 

  

Click on the icon to visit a simulation of the Ferris 

wheel. You will be able to view the light from: 

e in front of the wheel DEMO 

e a side-on position 

  

e above the wheel. 

You can then observe graphs of the green light’s position as the wheel rotates at a constant rate. 

Things to think about: 

a Andrew estimates how high the light is above ground level at two second intervals. What will 

a graph of this data look like? Assume that the light is initially in the position shown. 

b Andrew then estimates the horizontal position of the light at two second intervals. What will a 

graph of this data look like? 

What similarities and differences will there be between your two graphs? n 

d Can you write a function which will give the: 

i height of the light at any time ¢ seconds 

ii horizontal displacement of the light at any time ¢ seconds? 

NI PERIODIC BEHAVIOUR 
Periodic phenomena occur all the time in the physical world. For example, in: 

e seasonal variations in our climate 

e variations in average maximum and minimum monthly temperatures 

e the number of daylight hours at a particular location 

e tidal variations in the depth of water in a harbour 

e the phases of the moon 

e animal populations. 

These phenomena illustrate variable behaviour which is repeated over time. The repetition may be called 

periodic, oscillatory, or cyclic in different situations. 

In this Chapter we will see how trigonometric functions can be used to model periodic phenomena.
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OBSERVING PERIODIC BEHAVIOUR 

The table below shows the mean monthly maximum temperature for Cape Town, South Africa. 
  

  

  

  

  

  

  

  

  

    

Month Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec 

Fenprae 70 
On the graph alongside we plot the temperature 7" on T(°C) 

the vertical axis. We assign January as ¢ =1 month, 30| 5 

February as ¢t = 2 months, and so on for the e o . ° ° 

12 months of the year. 20 ° o U 
© o ° 1 (10,213) 

10 

t (months) 
< - - - - = 

+ 3 6 9 124 
JAN JAN 

The temperature shows a variation AT (°C) 

from an average of 28°C in 30( 4 o 

January through a range of values e o o® ‘o o ° ° 

across the months. The cycle will 20 ° Y o ° ° ° . L ° 

approximately repeat itself for each 10 ° ° 

subsequent 12 month period. By the ¢ (months) 

end of the Chapter we will be ableto < ; ‘ 3 ‘ 6 9 1=2 ; 1'5 ‘ 1:8 ‘ 2’1 + 2o4 > 

establish a periodic function which VIAN TAN 

approximately fits this set of points. 

HISTORICAL NOTE 

  lines of 

magnetic 

force 

directiong() 
of rotation 

  

  

     

In 1831, Michael Faraday discovered that an electric current was generated by rotating a coil of 

wire at a constant speed through 360° in a magnetic field. The electric current produced showed a 

voltage which varied between positive and negative values in a periodic function called a sine wave. 

TERMINOLOGY USED TO DESCRIBE PERIODICITY 

A periodic function is one which repeats itself over and over in a horizontal direction, in intervals of 

the same length. The period of a periodic function is the length of one repetition or cycle. 

f(z) is a periodic function with period p if f(x + p) = f(x) for all z, and p is the smallest 

positive value for this to be true.
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A cycloid is an example of a periodic function. It is the curve traced out by a point on a circle as the 

circle rolls across a flat surface in a straight line. 
DEMO 

  

  

ACTIVITY 1 

Use a graphing package to examine the function f(z) =z — [z R ATHING 

where |z| is “the largest integer less than or equal to . 

  

In the graphing package, you type |z] as floor(x). 

Is f(z) periodic? What is its period? 

WAVES 

In this course we are mainly concerned with periodic phenomena which show a wave pattern: 

      

principal axis 

A wave oscillates about a horizontal line called the principal axis or mean line. 

A maximum point occurs at the top of a crest, and a minimum point at the bottom of a trough. 

If the maximum and minimum values of the wave are max and min respectively, then the principal 

max -+ min 

2 

The amplitude is the distance between a maximum (or minimum) point and the principal axis. 

axis has equation y = 

max — min 

      

  

  

    

    

  

amplitude = 
2 

maximum point 
~ 

principal axis I amplitude 

P N 7SN U v AN . 

/ 

minimum point
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EXERCISE 8A 

1 Which of these graphs show periodic behaviour? 

a Ay b 

  
e Ay f 

T 

5 10 15 20 

v 

9 Ay h 

< 
xT 

v 

  

2 Paul spun the wheel of his bicycle. The following tabled values show the height above the ground 

of a point on the wheel at various times. 

  

(e o [os[oi oo o] ol il o o] 7] 
Hezght above ground (cm) | 0 
  

  

Time (seconds) 22(24]26)|28 32343638 

  

(g s gt ] | 57| 0 | [ [ [ar [ ar] 9] 5] 
a Plot the graph of height against time. 

b s it reasonable to fit a curve to this data, or should we leave it as discrete points? 

¢ s the data periodic? If so, estimate: 

i the equation of the principal axis ii the maximum value 

i the period iv the amplitude. 

3 Plot the points for each data set below. Is there any evidence to suggest the data is periodic? 

afafol1[2[3]4[5[] 6 [7[8]9[10][1]12] 
7 e e R N A 

blz|[0] 2 |34 [5 |6 |78 | 9 |10] 12 ) 

Lol safir 21 52 5o s 102 st 101 Rl s 
CALCULATOR 
INSTRUCTIONS 
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I3 [ THE SINE AND COSINE FUNCTIONS 
A trigonometric function is a function which involves one of the trigonometric ratios. 

Consider the point P(cosé, sinf) on the unit circle. 

As 6 increases, the point P moves around the unit circle, and 

the values of cos# and sin @ change. 

We can draw the graphs of y = sinf and y = cosf by 

plotting the values of sin # and cos 6 against 6. 

  

THE GRAPH OF y =siné 

By considering the y-coordinates of the points on the unit circle at intervals of §, we can create a table 

of values for sin 6: 

  

  

      
  

ud s ud 27 i 4m 3 5w i (o Jolgls sl ®)n% ] ¢ ¥ ¥ [Hor) 
] L]V V3|1 Sl VB | B L sin @ 0‘2‘2‘1 o 2‘0 D D 1 > 510 

  
  

Plotting sin @ against 0 gives: 

AY 

1   

  

        
  

  

,w 

Once we reach 27, P has completed a full revolution of the DEMO 

unit circle, and so this pattern repeats itself. 

THE GRAPH OF y = cos@ 

By considering the z-coordinates of the points on the unit circle at intervals of &, we can create a table 

of values for cos 6: 

  

      
  

i ™ i 2 5 I 4 3 5w 11m 
n 01 5|52 3 6 ] ‘ 6 3 ‘ 2 3 5 | 27 

V3|1 L B 1| 8| 1 1| B cosf | 1 o 510 ‘ 5 o 1 ‘ o 5|0 5 o 1 
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Plotting cos 6 against 0 gives: Tk i oF g=Gcas( 

AY shows the z-coordinate 

of P as P moves around 

the unit circle. 

  

  

  

  

       1   
v 

EXERCISE 8B 

1 Below is an accurate graph of y = sin6. 

1?! 

0:5 

—0:5 

1 

  

Find the y-intercept of the graph. 

b Find the values of § on 0 < 0 < 47 for which: 

1 i sinf=0 ii sinf = -1 iii sinf = iv sinf = “&
 

ol
 

¢ Find the intervals on 0 < 6 < 47 where sin is: 

i positive il negative. 

d Find the range of the function. 

2 Below is an accurate graph of y = cos®6. 

1?! 

0:5 

—0:5 

1 

  

a Find the y-intercept of the graph. 

b Find the values of 8 on 0 < 0 < 47 for which: 

i cosf=0 il cosf=1 iii cosf =— iv cosf =— 

o
=
 

S
 

¢ Find the intervals on 0 < 6 < 47 where cosf is: 

i positive i negative. 

d Find the range of the function.
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I [ GENERAL SINE AND COSINE FUNCTIONS 
Now that we are familiar with the graphs of y =sinf and y = cosf, we can use transformations to 

graph more complicated trigonometric functions. 

Instead of using #, we will now use z to represent the angle variable. This is just for convenience, so 

we are dealing with the familiar function form y = f(x). 

For the graphs of y =sinz and y = cosz: 

e the period is 27 e the amplitude is 1 e the principal axis is the line y = 0. 
  

=sinx 
  

  

    
                                                

  

For all z, sinx = cos (z — %) 

s 
2 and cosx Il Z.

 
= —
 8 + 

  INVESTIGATION 

What to do: GRAPHING 
1 a Use the graphing package to graph on the same set of axes: 

i y=sinz il y=2sinz i y=1sinz 

iv y=—sinz v yzfésinx Vi yzfgsinx 

b For graphs of the form y = asinz, comment on the significance of: 

i the sign of a il the size of a, or |a|. 

2 a Use the graphing package to graph on the same set of axes: 

i y=sinz ii y=sin2z iii y= sin(%z) iv y=sin3z 

b For graphs of the form y = sinbz, b > 0, what is the period? 

3 a Graph on the same set of axes: 

i y=sinz ii y:sin(xfg) iiii y:sin(erg) 

b What translation moves y =sinz to y = sin(z — ¢)? 

4 a Graph on the same set of axes: 

i y=sinz il y=sinz+2 iii y=sinz—2 

b What translation moves y =sinz to y =sinx + d? 

¢ What is the principal axis of y =sinz + d? 

5 What sequence of transformations maps y =sinz onto y = asinb(z — ¢) + d?
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From the Investigation you should have observed the following properties of the general sine function: 

For the general sine function 

y =asin(b(x —¢)) +d 

=) 
affects affects affects affects 

amplitude period horizontal translation vertical translation 

e the amplitude is |a| 

e the period is 2% for b>0 

e the principal axis is y =d 

e y = asin(b(x —c)) + d is obtained from y = sinz by a vertical stretch with scale factor a 
g " 1 g 5 5 

and a horizontal stretch with scale factor 7 followed by a horizontal translation of ¢ units and a 

vertical translation of d units. 

The properties of the general cosine function y = acos(b(z —¢)) +d are the same as DEMO 

those of the general sine function. 

Example 1 LR (R (TS 

    

      

  

Sketch the graphs of the following on 0 < z < 27 

     a y:sin(:cfg) b y=cos3z < y:cos(er%)Jrl d y=—sinz 

         

     

  

a We translate y = sinz horizontally b We stretch y = cosz horizontally with 
5 % units to the right. scale factor % 

— cos g 2m y = cos3z has period 5. 

  

  

p 13_r) y = cos 3x 

2 
- - > > 

-1 y:sina?"-" 

¢ We translate y = cosx horizontally 

& units to the left, and 1 unit upwards. 

1442 

> 
x 

-         
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EXERCISE 8C 

1 State the transformation which maps y = sinz onto: 

) a y=sinzx—1 b y:sin(wf I3
 

d y=sindz e y=sing 

2 State the transformation which maps y = cosz onto: 

a y=%cosz b y=—cosz 

3 State the period of: 

a y=sinbdx b y =sin(0.6x) 

d y=cos3z e y=cosig 

4 Find b given that the function y = sinbxz, b > 0 has period: 

a b b %" ¢ 127 d 

5 State the maximum and minimum value of: 

a y=4cos2zx b y=3cosz+5 

6 For the function y = 4sin3z + 2, state the: 

a amplitude b period 

7 The general cosine function is y = acos(b(z — ¢)) + d. 
State the geometrical significance of a, b, ¢, and d. 

8 Sketch the graphs of the following for 0 < x < 4m: 

a y=sinzx—2 b y=sinz+3 

d y=sin(z—2) e y=sin(z+2) 

g y=sin(z—%)+1 h y=sin(z—-1) -2 

i y=3sinz k y=%sinm 

m y=sin3z n y=sing 

9 Sketch the graphs of the following for —27 < z < 27: 

a y=-cosx+2 b y:cos(zfg) 

d y=%cosz e y=—coszT 

g y=cos(a:+%)—1 h y=cos2z 

10 a Sketch the curve y =4sinz for 0 <z < 27 

b Find the value of 3 when: i x=5 i z=1 

Mark these points on your graph in a. 

11 For what values of d does the graph of y = 3cosz +d lie: 

a entirely above the x-axis 

b entirely below the z-axis 

¢ partially above and partially below the z-axis? 

4 

y=2sinx 

y=sin(az—§)+2 

y=cos(z+%)—2 

y =sinnz 

y = cos &g 

e 100 

y=—2cos(x —3)—4 

range. 

y=sinx —0.5 

y = sin(m — %) 

y=sin(m+%)+2 

y= %sinx 

y = sindx 

y:cos(er%) 

y=cos(z—%)+1 

y = cos g
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Sketch the graph of y =3 cos2z for 0 <      

      a =3, so the amplitudeis |3|=3. 
y=3cos2x 

b =2, so the period is 

We stretch y = cosz vertically with scale 

factor 3 to give y = 3cosz, then stretch 

y = 3cosz horizontally with scale factor 

  

% to give y = 3 cos2x. 

  

    
12 State the transformations which map: 

a y=sinz onto y=2sin3zx b y=cosz onto y=—2cosx 

¢ y=sinz onto y =3sinz—5 d y=cosz onto y=cos(2(z+%)) 

13 Sketch the graphs of the following for —27 < z < 2m: 

a y=—3sinz b y=cos2z+1 cy=3 sm(z+ )—% 

d y=3 cos(z+ )+1 e y=3sin(z—§)—1 f y——cos( (z——)) 

14 Consider the general sine function y = asin(b(z — ¢)) + d. State which of the variables a, b, c, 

and d can be changed to always produce a change in: 

a the z-intercepts of the function b the y-intercept of the function 

¢ the range of the function. 

Example 3 o) Self Tutor 

Find the unknowns in this function: 

  

  

  

f(3)=8, so asinZ+d=38 f(ZE)=4, so asinZ +d= 

at+d=8 .. (1) o —latd= 

So, we have at+d=8 {(1)} 

—a+2=1 {2x)} 
Adding, 3d=9 andso d=3 

Substituting d =3 into (1) gives a+3=8 

L a=5 
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15 Find the unknowns in each function: 

f(z)=asin2z+d b y    f(x)=acosz+d 

   
  

EEEITIY O R (T 

Find the equation of this Y 

sine function. 

  

  

The amplitude is 1, so a = 1. 

The period is 7, so 2% =m and .. b=2. 

There is no horizontal translation, so ¢ = 0. 

The principal axisis y =1, so d=1. 

The equation of the function is y = sin 2z + 1.     
16 Find the equation of each sine function: 
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I3 I MOBELLING PERIODIC BEHAVIOUR 
The sine and cosine functions are both referred to as sinusoidal functions. They can be used to model 

many periodic phenomena in the real world. In some cases, such as the movement of the hands on a 

clock, the models we find will be almost exact. In other cases, such as the maximum daily temperature 

of a city over a year, the model will be less accurate. 

The average daytime temperature for a city is given by the function D(t) =5 cos(%t) +20 °C, 

where ¢ is the time in months after January. 

a Sketch the graph of D against ¢ for 0 < ¢ < 24. 

b Find the average daytime temperature during May. 

  

  

¢ Find the minimum average daytime temperature, and the month in which it occurs. 

a For D(t) = 5c0s(%t) + 20: 

e the amplitude is 5 

o the period is 2T _ 12 months 
(%) 

o the principal axis is D = 20. 

b May is 4 months after January. 

When ¢t =4, D =5x cosF+20 

=5x(—-1)+20 

=175 

So, the average daytime temperature during May is 17.5°C. 

  

¢ The minimum average daytime temperature is 20 — 5 = 15°C, which occurs when 

t=6 or 18. 

So, the minimum average daytime temperature occurs during July.     
EXERCISE 8D.1 

1 The temperature inside Vanessa’s house ¢ hours after midday is given by the function 

T(t) = 6sin({5t) +26 °C. 

a Sketch the graph of T against ¢ for 0 < ¢ < 24. 

b Find the temperature inside Vanessa’s house at: 

i midnight i 2pm. 

¢ Find the maximum temperature inside Vanessa’s house, and the time at which it occurs. 

2 The depth of water in a harbour ¢ hours after midnight is D(t) = 4cos(%t) +6 metres. 

a Sketch the graph of D against ¢ for 0 < ¢ < 24. 

b Find the highest and lowest depths of the water, and the times at which they occur. 

¢ A boat requires a water depth of 5 metres to sail in. Will the boat be able to enter the harbour 

at 8 pm?
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The tip of a clock’s minute hand is H (t) = 15 cos(;—ot) +150 cm above 

ground level, where ¢ is the time in minutes after 5 pm. 

a Sketch the graph of H against ¢ for 0 < ¢ < 180. 

b Find the length of the minute hand. 

¢ Find, rounded to 1 decimal place, the height of the minute hand’s tip 

at: 

i 5:08 pm il 5:37 pm i 5:51 pm iv 6:23 pm 

  

  

On a mini-golf hole, golfers must putt the ball through a 

castle’s entrance. The entrance is protected by a gate which 9? H 

moves up and down. 

The height of the gate above the ground ¢ seconds after it 

touches the ground is H(t) = 4sin(%(t —2)) +4 cm. 

a Sketch the graph of H against ¢ for 0 <t < 16. L L 

b Find the height of the gate above the ground 2 seconds Jl | | |X’ 
after the gate touches the ground. . 

  

  

  

    
  

  

  

  

    

  

  

    
                          

                  

¢ Eric is using a golf ball with radius 2.14 cm. He putts 

the ball 1 second after the gate touches the ground, and 

the ball takes 5.3 seconds to reach the castle’s entrance. [ ] 
Will the ball pass through the entrance? 

  TR, 

  
5 

On a hot summer day in Madrid, Antonio pays careful attention to the temperature. The maximum 

of 41.8°C occurs at 3:30 pm. The minimum was 27.5°C. Suggest a sine function to model the 

temperature for that day. 

The mean temperature = EECE dEr 34.65°C, so d=34.65. 

The amplitude = 218 =2%5 _ 7 150¢ 
a=7.15 

L 2 
The period is 24 hours, so b= 5§ = 5. 

The maximum occurs at 3:30 pm, so we assume the temperature passed its mean value 6 hours 

earlier, at 9:30 am. 

The day begins at midnight, so the function is shifted 9% hours to the right, thus ¢=9.5. 

If ¢ is the number of hours after midnight, the temperature 7" is modelled by 

T(t) = 7.15sin (% (t — 9.5)) -+ 34.65 °C.   
On a September day in Moscow, the maximum temperature 15.8°C occurred at 2 pm. The minimum 

was 5.4°C. Suggest a sine function to model the temperature for that day. Let T" be the temperature 

and ¢ be the time in hours after midnight. 

The ferry operator at Picton, New Zealand, is studying the tides. High tides occur every 12.4 hours. 

The first high tide tomorrow will be at 1:30 am. The high tide will be 1.36 m and the low tide will 

be 0.16 m. Find a cosine function to model the tide height for the day. Let H be the tide height 

and ¢ be the time in hours after midnight.
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7 Answer the Opening Problem on page 200. 

8 Some of the largest tides in the world are observed in Canada’s Bay of Fundy. The difference 

between high and low tides is 14 metres, and the average time difference between high tides is 

about 12.4 hours. On a particular day, the first high tide is 16.2 m, occurring at 9 am. 

a Find a sine model for the height of the tide H in terms of the time ¢. 

b Sketch the graph of the function for that day. 

9 On an analogue clock, the hour hand is 6 cm long and the minute hand 

is 12 cm long. Let ¢ be the time in hours after midnight. 

a Write a cosine function for the height of the tip of the hour hand 

relative to the centre of the clock. 

b Write a sine function for the horizontal displacement of the tip of 

the minute hand relative to the centre of the clock. 

  

FITTING TRIGONOMETRIC MODELS TO DATA 

Suppose we have data in which we observe periodic behavior. In such cases, we usually cannot fit an 

exact model. However, we can still apply the same principles to estimate the period, amplitude, and 

principal axis from the data. 

You can check your models using your graphics calculator. Click on this icon 

for instructions. 
GRAPHICS 

CALCULATOR 
INSTRUCTIONS 

  

  

The mean monthly maximum temperatures for Cape Town, South Africa are shown below: 

Month () Jan | Feb | Mar | Apr | May [ Jun | Jul | Aug | Sep | Oct | Nov | Dec 

Temperature (T °C) | 28 | 27 [ 25.5| 22 [185] 16 [ 15| 16 [ 18 [21.5] 24 | 26 

We want to model the data with a trigonometric function of the form 7' = asin(b(t — ¢)) +d 

where Jan = 1, Feb = 2, and so on. 

a Draw a scatter diagram of the data. 

b Without using technology, estimate: 

ib il a iii d iv ¢ 

¢ Check your answers using technology. 

  

  

  

  

  

  

  

                            

404 7(oc) 

30 
° ° . /.P 

20 * I - 
o 

10 
t ontns     

Jan  Mar May Jul Sep  Nov  
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b | The period is 12 months, so ZTW =12 and .. b=Z. 

il The amplitude = R — i, 23 ; B 6.5, so a=~6.5. 

ili  The principal axis is midway between the maximum and minimum, so 
A BEI5 o . 
  

iv. The model is 7'~ 6.5 sin(%(t = c)) +21.5 for some constant c. 

On the original graph, point A is the first point shown at which the sine function starts 

a new period. Since A is at (10, 21.5), ¢ = 10. 

¢ From b, our model is 1"~ 6.5sin(Z%(t — 10)) +21.5 

~ 6.5 5in(0.524¢ — 5.24) + 21.5 

NORMAL FLOAT AUTO REAL DEGREE MP [ L A 1] NORMAL FLOAT AUTO REAL DEGREE MP 1] 

Iterations:3 g=axsin(bx+c)+d 
Xlist:lLi a=6.292150004 
Ylist:lLz2 b=0.5247075375 
Period: c=0.9671239289 
Store RegEQ: d=21.44562989 
Calculate 

Using technology, 

T ~ 6.29sin(0.525¢ + 0.967) + 21.4 sin(z + 2kr) =sinz 

   
~ 6.295in(0.525¢ + 0.967 — 2) + 21.4 o Al IS S 
~ 6.29in(0.525¢ — 5.32) + 21.4 

  

    
  

EXERCISE 8D.2 

1 Below is a table which shows the mean monthly maximum temperatures for a city in Greece. 
  

  

                  

Month Jan | Feb | Mar | Apr | May | Jun | July | Aug | Sept | Oct | Nov | Dec 

Temperature (°C) | 15 | 14 | 15 | 18 | 21 | 25 | 27 | 26 24 [ 20| 18 | 16       
  

Draw a scatter diagram of the data. 

b What features of the data suggest a trigonometric model is appropriate? 

¢ Your task is to model the data with a sine function of the form 7' = asin(b(t —¢))+d, where 

Jan = 1, Feb = 2, and so on. 

Without using technology, estimate: 

ib i a il d iv ¢ 

d  Use technology to check your model. How well does your model fit?
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2 The data in the table shows the mean monthly temperatures for Christchurch, New Zealand. 
  

Month Jan | Feb | Mar | Apr | May | Jun | July | Aug | Sept | Oct | Nov | Dec 

Temperature (°C) | 15 | 16 | 145 [ 12 | 10 | 75 | 7 | 73 | 8% | 104 | 124 | 14 

a Find a cosine model for this data in the form 

T =~ acos(b(t—c))+d without using technology. ‘ 

Let Jan = 1, Feb = 2, and so on. @ 

r-‘ 

  

  

N           
  

b Draw a scatter diagram of the data and sketch the 

graph of your model on the same set of axes. 

¢ Use technology to check your answer to a. 

3 At the Mawson base in Antarctica, the mean monthly temperatures for the last 30 years are: 

Jan | Feb | Mar | Apr | May | Jun | July Aug Sept Oct | Nov | Dec 

Temperature (°C) | 0 0 4 Y 14 17| —18 13 

a Find a sine model for this data without using technology. 

Use Jan =1, Feb = 2, and so on. 

  

  

b Draw a scatter diagram of the data and sketch the graph of 

your model on the same set of axes. 

¢ How appropriate is the model? 

L An object is suspended from a spring. If the object is pulled below 

its resting position and then released, it will oscillate up and down. 

The data below shows the height of the object relative to its rest 

position, at different times. 

  

(e Comario | o[ o1 [ o7 [ o3 [ o [os ou o7 o5 o0 
  

  

  

Tme(tseconds 1.1 1.2 1.3 1.4 |15 1711819120 

Height (H cm) | —7.5 | —13 | =15 | —13 13115 | 13 |75 

a Draw a scatter diagram of the data. 

b Find a trigonometric function which models the height of the object over time. 

¢ Use your model to predict the height of the object after 4.25 seconds. 

d  What do you think is unrealistic about this model? What would happen differently in reality? 

  RESEARCH 

1 How accurately will a trigonometric function model the phases of the moon? 

2 Are there any periodic phenomena which can be modelled by the sum of trigonometric functions?
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ACTIVITY 2 

In this Activity you will work in small groups to model the behaviour of a pendulum. 

You will need: string, sticky tape, a ruler, a stopwatch, and a AA battery. 

What to do: 

1 Cut a piece of string of length 75 cm. Attach one end 

of the string to the battery, and the other end to your 

desk. 

2 Hold the battery to one side, then release it, causing 

the battery to swing back and forth like a pendulum. 

3 Using your stopwatch and ruler, measure the 

maximum and minimum horizontal displacement 

reached by the battery, and the times at which they 

occurred. You may need to repeat the experiment 

  

: - horizontal 
several times, but make sure the battery is released displacement 

from the same position each time. 

4 Use your data to find a trigonometric function which models the horizontal displacement of the 

battery over time. 

What part of the function affects the period of the pendulum? 

6 Repeat the experiment with strings of different length. Explore the relationship between the 

length of the string and the period of the pendulum. 

I3 M e TaNGENT FkCTION 
We have seen that if P(cosf, sinf) is a point which 

is free to move around the unit circle, and if [OP] is 

extended to meet the tangentat A(1, 0), the intersection 

between these lines occurs at Q(1, tan6). 

  

      tan @ 
This enables us to define the tangent function 

0 x 

sin - > 
tan = . -1 (1,0) 

cos 6 

We have also seen that tan @ is: 

e positive in quadrants 1 and 3 

e negative in quadrants 2 and 4 tangent 

e periodic with period 7. 

  

What happens to tan @ when P is at: 

a (1,0) and (—1,0) b (0,1) and (0, —1)?
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THE GRAPH OF y = tanx 

tanaz is zero whenever sinz =0, so the zeros of y = tanx are km, k € Z. 

tanz is undefined whenever cosxz = 0, so the vertical asymptotes of y = tanz are x = 3 + k7w 

for all k€ Z. 

tanx has period = 7 and range y € R. 

  

  

Click on the icon to explore how the tangent function is produced from the unit circle. TANGENT FUNCTION 

THE GENERAL TANGENT FUNCTION 

The general tangent function is y = atan(b(z —c¢))+d, a#0, b> 0. 

Example 8 

3n 

  

Without using technology, sketch the graph of y = tan (z + %) for 0 <z < 3m. 

y = tan (a: + %) is a horizontal translation 

of y=tanx to the left by § units. 

y = tanz has vertical asymptotes © = 

xr= T’ €r = 

0, 7, 27, and 3. 

¢, and its 2-intercepts are 

y=tan(z+ Z) has vertical 

asymptotes x = 

and z-intercepts 

The principal axis is y = d. DYNAMIC TANGENT 
T FUNCTION 

The period of this function is 5 

The amplitude of this function is undefined. 

There are infinitely many vertical asymptotes. 

LR AT 

z 
2 

5T 

  

™ _ 57 _ 97 
1 T=7 T= 
3m Tm 1im o) and = e   
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Ao 

Without using technology, sketch the graph of y =tan2z for —7w <z < 7. 

  

  

y = tan2z is a horizontal stretch 

of y =tanx with scale factor % 

Since b =2, the period is Z. 

y = tan 2z has vertical asymptotes 

z==+2, =43 and   

      

  

  

    z-intercepts 0, =5, £   

  

  
EXERCISE 8E 

1 State the transformations which map y = tanz onto: 

a y=tan(z—%) b y=4tanz c y=tan(%x) 

d y=tan2z—1 e y=—1tanaz f y=tan(z+m)+2 

2 State the period of: 

a y=tan3z b y=tang ¢ y=tannw 

d y=—tan(Zz) e y=tan(Z 1) f y=tannz, n#0 

3 For each function, write down the: 

i zeros i vertical asymptotes. 

a y=tan2z b y=tan(z+ %) ¢ y=4tan(g(z—%)) 

L Sketch the graph of the following for —27 < z < 2m: 

a y=tan(z—%) b y=%tan% < y=3tan(z—%) 

5 Find p and ¢ given the following graph is of the function y = tanpt + q.    
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6 Find the possible values of a and b given the following graph is of the function y = tana(x — b). 

: : v 4 : 

iz x x v 
15 15 5 15 / 

7 a Describe the sequence of transformations used to transform y = tanz into 

y= 2tan(z+ %) -1 

b Sketch y:Qtan(aflJr%) —1 for =27 < <27 

8 

  

o
y
 

8 Consider the functions f(x) =tanxz and g(z) =2z — 3. 

  

a Find: 

i (fog)(x) it (gof)(x) 
b Find the value of: 

i (fog)(3) it (go f)(m) 
¢ Write down the period and vertical asymptotes of: 

i (fog)() it (gof)(x) 
d  Sketch the graphs of (fog)(xz) and (go f)(xz) for —27 <z < 2m. 

ACTIVITY 3 

Click on the icon to run a card game for trigonometric functions. CARD GAME 

  REVIEW SET 8A 

1 Which of the following graphs display periodic behaviour? 

  

2 State the minimum and maximum values of: 

a 1-+sinz b —2cos3z
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State the period of: 

a y=4sing b y=—2cosdx € y=4cos5 +4 d y:%tan&v 

Copy and complte: gl 

  

=—3sing +1 

y= 3<:os7r1: 

a Draw the graph of y = cos3z for 0 < 

b Find the value of y when = = %"‘ Mark this point on your graph. 

Sketch the graphs of the following for —27 < x < 27 

a y=4sinw b y:sm(;r,fg)+2 ¢ y=sin3 

d y=cos(x+%) e y—SCOb]7 f y=cosdz 

State the transformations which map: 

a y=sinz onto y = 3sin2z b y =cosz onto y:cos(wfg)fl 

Find the cosine function represented in each of the following graphs: 

   
a b 

Sketch for 0 < x < 47 

a y=tang b y=%tan% 

a Describe the sequence of transformations which maps y = tanz onto y = tan3x + 2. 

b State the period of y = tan3z + 2. 

¢ Sketch y =tan3x+2 for —7w <z < 7. 

The graph of f(x) = asin(b(z — ¢)) + d is shown 

alongside. 

a Find the values of a, b, ¢, and d. 

b The function g(z) is obtained by translating f(z) 

2 units right and 3 units down, followed by a 

vertical stretch with scale factor 2. (~3,3) 

Find g(z) in the form g(x) = psin(q(z—r))+s. =    
The proportion of the Moon which is illuminated each night is given by the function 

M(t) = cos( ) + %, where ¢ is the time in days after January 1st. 

a Sketch the graph of M against ¢ for 0 < ¢ < 60. 

b Find the proportion of the Moon which is illuminated on the night of: 

i January 6th ii January 21st ili January 27th iv February 19th. 

¢ How often does a full moon occur? 

d On what dates during January and February is the Moon not illuminated at all?
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13 On an April day in Kyoto, the maximum temperature 14.1°C occurred at 2:30 pm. The minimum 

was 6.7°C. 

a Suggest a sine function to model the temperature for that day. Let 7" be the temperature 

and ¢ be the time in hours after midnight. 

b Graph T'(¢) for 0 <t < 24. 

14 A robot on Mars records the temperature every Mars day. A summary series, showing every 

one hundredth Mars day, is shown in the table below. 

Number of 

Mars days (n) 

Temp. (°C) 

  

   

  

            
100 ‘200‘ 300 [ 400 | 500 | 600 ‘ 700 ‘ 800 900‘1000 1100{1200]1300 
  

  

  

a Find the maximum and minimum temperatures recorded by the robot. 

b Use the data to estimate the length of a Mars year. 

¢ Without using technology, find a sine model for the temperature 7" in terms of the number 

of Mars days n. 

d Draw a scatter diagram of the data and sketch the graph of your model on the same set of 

axes. 

e Check your answer to ¢ using technology. How well does your model fit? 

REVIEW SET 8B 

1 Consider the graph alongside. . Y 

a Explain why this graph shows periodic 

behaviour. 

b State: 

i the period 10 20 

ii the maximum value 

jii the minimum value. 

2 State the transformation which maps: 

a y=cosr onto y=cos(z+%)+1 b y=sinz onto y=sin3z 

3 State the period of: 

a y=4sing b y=tandx 

4 Find b given that the function y = sinbx, b > 0 has period: a 6m b & <9 

5 State the minimum and maximum values of: 

a y=>5sinx—3 b y=1cosz+1 

6 Find the principal axis of: 

a yzfésin(xf%)jLS b y=2cos§—4 

7 Sketch the graphs of the following for 0 < z < 27: 

a y=2cos3z b y=25in(z—§)+3 < y=—cos(z+ ) 

1 d y=2sinz—3 e y=%tan(z—%) f y=2tan3
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11 

12 

13 

14 

TRIGONOMETRIC FUNCTIONS  (Chapter 8) 

a Find the sine function shown in this graph. 

b Write down the equivalent cosine function for this 

graph. 

  

Draw the graph of y = 0.6cos(2.3z) for 0 <z <5. 

Find a and b given the graph of ; i Y 

y =tanaz +b shown. : i 

  

| 3 | 
@
l
 - 5 8 

State the transformations which map: 

a y=tanz onto y = —tan2z 

b y=sinz onto y=2sin(3(z—3)) +3 

As the tip of a windmill’s blade rotates, its height above ground is given 

by H(t) = 10cos(%t) +20 metres, where ¢ is the time in seconds. 

a Sketch the graph of H against ¢ for 0 < ¢ < 36. 

b Find the height of the blade’s tip after 9 seconds. 

¢ Find the minimum height of the blade’s tip. 

d How long does the blade take to complete a full revolution? 

  

A steamroller has a spot of paint on its roller. As the 

steamroller moves, the spot rotates around the axle. 

The roller has radius 1 metre and completes one full 

revolution every 2 seconds. 

a What does the graph of the spot’s height over 

time look like? 

b What function gives the height of the paint spot 

over time? 

  

The table below gives the mean monthly maximum temperature for Perth Airport in Australia. 

  

a A sine function of the form 7' =~ asin(b(t — ¢)) + d is used to model the data. 

Find good estimates of the constants a, b, ¢, and d without using technology. 

Use Jan = 1, Feb = 2, and so on. 

b Draw a scatter diagram of the data and the graph of your model on the same set of axes. 

¢ Check your answer to a using technology. How well does your model fit?



     

  

Trigonometric 

equations and 

identities 
Contents: A Trigonometric equations 

B Using trigonometric models 

€ Trigonometric identities 

D Double angle identities
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OPENING PROBLEM 

Andrew is watching a Ferris wheel rotate at constant speed. There are many lights around the Ferris 

wheel, and Andrew watches a green light closely. The height of the green light after ¢ seconds is 

given by H(t) =10 sin(g'—ot) + 12 metres. 

Things to think about: 

a At what height is the green light: 

i initially il after 75 seconds? 

b How long does it take for the wheel to complete a full circle? 

¢ At what times in the first three minutes is the green light 16 metres above the ground? 

In this Chapter we will consider: 

e equations involving trigonometric functions and methods for their solution 

o identities which connect trigonometric ratios, and which are true for a/l angles. 

We will see how trigonometric identities can be used to help solve more complicated equations. 

P I TRIGONOMETRIC EQUATIONS 
Trigonometric equations will often have infinitely many solutions unless a restricted domain such as 

0 << 3m is given. 

For example, in the Opening Problem, the green light will be 16 metres above the ground when 

10sin(Z5¢) + 12 = 16 metres. 

This is a trigonometric equation, and it has infinitely many solutions provided the wheel keeps rotating. 

For this reason we would normally specify a time interval for the solution. For example, if we are 

interested in the first three minutes of its rotation, we specify the domain 0 < ¢ < 180. 

We will examine solving trigonometric equations using: 

e pre-prepared graphs e technology e algebra. 

GRAPHICAL SOLUTION OF TRIGONOMETRIC EQUATIONS 

If we are given a graph with sufficient accuracy, we can use it to estimate solutions. 

e ) Self Tutor 

Solve cosxz = 0.4 for 0 <z < 10 radians using the graph of y = cosx. 
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y =04 meets y=cosz when x~1.2,51,o0r74. 

The solutions of cosxz = 0.4 for 0 < x < 10 radians are 1.2, 5.1, and 7.4. 

  

EXERCISE 9A.1 

  

Use the graph of y =sinz to solve, correct to 1 decimal place: 

a sinx=0.3 for 0<x<15 b sinx=-04 for 5<2 <15 

¢ sinz =03 or 0 <o <27 d sinz =-0.6 for 7 <z <27 

2 [y 

  

Use the graph of y = cosx to solve, correct to 1 decimal place: 

a cosx=04 for 0<x<10 b cosx =—-0.3 for x4 x 4 

¢ cosz=0.5 for m << 2w d cosz =—0.8 for 5
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3 

ly=sin2z 

Use the graph of y =sin2z to solve, correct to 1 decimal place: 

a sin2x =0.7 for 0 <z <16 b sin2zx=-0.3 for 0 <z <16 

¢ sin2x=0.2 for 7 <z <27 d sin2x =-0.1 for 0 <z <27 

L Yy 

  

Use the graph of y =tanz to solve, correct to 1 decimal place: 

a tanx =2 for 0 <2 <8 b tanax = -—14 for 

¢ tanz =35 for 0 <z <27 d tanz = —2.4 for 

SOLVING TRIGONOMETRIC EQUATIONS USING TECHNOLOGY 

Trigonometric equations may be solved numerically using either a graphing package or GRAPHING 

a graphics calculator. In most cases the answers will not be exact, but rather a decimal PACKAGE 

approximation. 

When using a graphics calculator, make sure that the mode is set to radians.
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Solve 2sinz —cosx =4 —x for 0 < x < 27.      
     We graph the functions Y; = 2sinX — cosX and Yo =4 — X on the 

same set of axes. 
GRAPHICS 

We use window settings just larger than the domain: CALCULATOR 
INSTRUCTIONS 

N ™ _ 137 _ T Xmin = —F  Xmax = =% Xscale = § 

Casio fx-CG50 TI-84 Plus CE TI-nspire 

CALC INTERSECT 
[EXE]:Show coordinates NORMAL FLOAT AUTO REAL RADIAN MP > +Unsaved w 

n x-cos x 

-3 
X=1.816721316 ¥=2.183278684 

Intersection 
¥=3.2750811 v=0.7249189 

  

The solutions are x ~ 1.82, 3.28, and 5.81.   
  

EXERCISE 9A.2 

1 Solve for z on the domain 0 < 2 < 12: Make sure you find 

a sinz = 0.431 b cosz = —0.814 ¢ 3tanz —2=0 all the solutions on 
the given domain. 

2 Solve for x on the domain —5 < x < 5: 

a bcosr—4=0 b 2tanx+13=0 ¢ 8sinx+3=0 

3 Solve for 0 <2 < 2m: 

a sin(z +2) = 0.0652 b sin’z+sinz—1=0 

  

  

  4 Solve for x:  cos(x — 1) +sin(x + 1) = 62 + 522 —2° for —2 < 2 <6. 

SOLVING TRIGONOMETRIC EQUATIONS USING ALGEBRA 

Exact solutions obtained using algebra are called analytic solutions. We can find analytic solutions to 

some trigonometric equations, but only if they correspond to angles for which the trigonometric ratios 

can be expressed exactly. 

We use the periodicity of the trigonometric functions to give us all 

solutions in the required domain. Remember that sinz and cosx 

both have period 27, and tanz has period 7. of the solutions in the 

required domain. 

When solving trigonometric 

equations, you must find all 

For an equation such as sin2z = % on the domain 0 < 2 < 2, 

we need to understand that if 0 < 2 < 27 then 0 < 2x < 4w So, 

when we consider points on the unit circle with sine %, we need to 

consider angles from 0 to 4. 
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Reminder: 

    

  

  

ECTITEN ) Self Tutor 

  

       

Solve for = on the domain 0 < z < 27: 

a cosxzf-‘g b 2sinz—1=0 ¢ tanz+v/3=0 

¢ tanz++v3=0 

. tanx:f\/g 

o 
3 

5T 
3 

z=3or X z=2For 3¢ 

EXERCISE 9A.3 

1 Solve for x on the domain 0 < x < 27: 

1 1 _ 1 a cosz =3 b sinz = —— < tanz—fi 

d sinz=-1 e cosr=0 f tanz =0 

2 Solve for z on the domain 0 < z < 27 

a 2sinz =+/3 b 3cosz+3=0 ¢ 2tanz —2=0 

3 Solve for z on the domain 0 < z < 4 

a 2cosx+1=0 b 2sinz=1 ¢ tanz =1 

4 Solve for x on the domain —27 < z < 2m: 

a 2sinz++v3=0 b V2cosz+1=0 ¢ tanz = —1



Example 4 «) Self Tutor 

  

  

Solve for x on 0 < o < 27 

cos’z = % sin?z =1 tan’z = 3 

Example 5 «) Self Tutor 

  

    

    

    

    

Solve exactly for 0 <z < 37: 

sing = —3 sin2z = — 

o
=
 

The three equations all have the form sinf = 7%. 

0<z<3m 

Iz o Uz Z*GOI'G 

  

       

In this case 6 is 2z. 

If 0< 2 <37 then 0 <2z < 67 

  

  

     
                 

_ Ir llm 197 23 B3lw . 35T 
T=13> 120 120 120 1200 13 

In this case # is = — Z. 
6 " Start at —% and work 

If 0<2<3m then —% <z — % < 5. . 
S0 6 = 6= 6 around to "T“, recording 
r—L—_x In o lm . O 

6 6> 6° 6 the angle every time ‘ 

=0, 4.7", or 21 you reach points A and B. 

If 0 <ax < 2w, state the domain of: 

z iy o T _ . 2z 1 T+ 3 r—F 2(x 4) T 

If —7 <2 <, state the domain of: 

xr 

3z 1 z—% 2r+ % —2x T—x 

Solve exactly for 0 <z < 3m: 

cp— 1L oy — L ) — L cosT = 3 cos2z = 5 cos(ach3)—2



Solve forx on 0 <z < 27 

9y — 1 sin2r = —3 

dn — L sing = —= 

Solve forz on 0 <o < 27: 

cos?3z = % 

cos 3z = 3@ 

2cos5+1=0 

sin®2z =1 

tan2x7\/§:0 

3tang —3=0 

  

3€1 TN 

Find the exact solutions of v/3sinz = cosz for 0 < 

O AR (118 

    

V3sinz = cos 

  = 
cos V3 

1 tanz = 3 
z=ZorIx 

{dividing both sides by v/3cosx} 

  

Find the exact solutions for 0 < 

sinx = —cosx 

x < 27 

sin3x = cos 3z sin 22 = v/3 cos 2 

  

  
_8r <, 3m < 2r 

1 ST S 

3 3r 3 11 s e T 
ae = (0}, 2,277, 2,477, 

Solve exactly: 

cos(r — %) % 27 <o <27 

Sin(4(z—%)) =0, 0<z<n7n 

  

Start at — and work 

around to 21”, recording 

the angle every time 

you reach points A and B. 
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13 Find the unknowns in each function: 

y=3sinbr+d     y=acosbx 

   
y:5cos(b(z7§))+d 

14 Find the exact solutions of tanz = /3 for 0 < = < 2. Hence solve the following equations 

for 0 <o <2m: 

a tan(r—%):x/g b tandz =3 ¢ tan’z =3 

  

Example 8 

Solve for z on 0 <z < 27, giving your answers as exact values: 

  

  

a 2sin?z+sinz =0 b 2cos’z+cosz—1=0 

a 2sin? z + sinz = 0 b 2cos? x4+ cosz —1=0 

sinz(2sinz +1) =0 oo (2cosz —1)(cosz+1) =0 

. sinz =0or —3 

     
15 Solve for 0 < 2 < 27 giving your answers as exact values: 

a 2sin’z —sinz =0 b 2cos?x = cosx 

¢ 2cos’xr—cosz—1=0 d 2sin’z 4 3sinz+1=0 

e tan'z —2tan’x -3 =0
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I3 [ USING TRIGONOMETRIC MODELS 
Having studied trigonometric equations, we can now apply them to the trigonometric models studied in 

Chapter 8. 

Example 9 l1>)) Self Tutor 

The height of the tide above mean sea level on January 

24th at Cape Town is modelled by h(t) = 3sinZt 
metres, where ¢ is the number of hours after midnight. 

a Graph y=nh(t) for 0 <t <24 

b When is high tide and what is the maximum height? 

¢ What is the height of the tide at 2 pm? 

d A ship can cross the harbour provided the tide is at 

least 2 m above mean sea level. When is crossing 

possible on January 24th? 

    

  

a h(0)=0 

h(t) = 3sin Zt has period = 2% =27 x £ =12 hours 
G 

  

  

b High tide is at 3 am and 3 pm. The maximum height is 3 m above the mean as seen at points 

A and B. 

¢ At2pm, t=14 and h(14) = 3sin 24T ~ 2.60 m. 
So, the tide is 2.6 m above the mean. 

h(t) 

  

     

      

— »—> | 

12 t3 15 U 18\2_1/24 

We need to solve A(t) =2, so 3sin Tt =2. 

Using a graphics calculator with Y; = 3sin % and Yo =2 

we obtain t; ~ 1.39, ty ~ 4.61, t3~ 13.39, t4 ~ 16.61 

Now 1.39 hours = 1 hour 23 minutes, and so on. 

So, the ship can cross between 1:23 am and 4:37 am or 1:23 pm and 4:37 pm.     
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EXERCISE 9B 

1 The population of grasshoppers after ¢ weeks is P(t) = 7500 4 3000sin &£ for 0 <t < 12. 

a Find: 

i the initial population ii the population after 5 weeks. 

b What is the greatest population size over this interval and when does it occur? 

¢ When is the population: i 9000 il 6000? 

d During what time interval(s) does the population size exceed 10000? 

2 Answer the Opening Problem on page 224. 

3 The model for the height of a passenger on a Ferris wheel is H(t) = 20 — 19 cos %, where H is 

the height in metres above the ground, and ¢ is in minutes. 

a Where is the passenger at time ¢t = 0? 

At what time is the passenger at the maximum height in the first revolution of the wheel? 

How long does the wheel take to complete one revolution? 

Sketch the graph of the function H () over one revolution. 

® 
O 

A 
O 

The passenger can see his friend when he is at least 13 m above the ground. During what times 

in the first revolution can the passenger see his friend? 

4 The population of water buffalo is given by P(t) =400 + 250sin I 

where ¢ is the number of years since the first estimate was made. 

a What was the initial estimate? 

b What was the population size after: 

i 6 months ii two years? 

¢ Find P(1). What is the significance of this value? 

d Find the smallest population size and when it first occurred. 

e Find the first time when the herd exceeded 500. 

  

5 Over a 28 day period, the cost per litre of petrol was modelled by 

C(t) = 9.2sin(Z(t —4)) +107.8 cents L™1. 

a True or false? 

i “The cost per litre oscillates about 107.8 cents with maximum price $1.17 per litre.” 

ii “Every 14 days, the cycle repeats itself.” 

b What was the cost of petrol on day 7, to the nearest tenth of a cent per litre? 

¢ On which days was the petrol priced at $1.10 per litre? 

d  What was the minimum cost per litre and when did it occur? 

6 A paint spot X lies on the outer rim of the wheel 

of a paddle-steamer. The wheel has radius 3 m and X 

rotates anticlockwise at a constant rate. X is seen KT 

entering the water every 4 seconds. T 

H is the distance of X above the bottom of the 

boat. Attime t =0, X is at its highest point.       _water level 

a Find a cosine model for H in the form 

H(t) = acos(b(t — ¢)) +d. bottom of the boat 

b At what time ¢ does X first enter the water?
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[ TRIGONOMETRIC IDENTITIES 
In mathematics, an identity is a result which is true for all values of a variable. 

For example, we have seen that for any value of a: 

  

e cos’z+sinz =1 e sin(—z)= —sinz e cos(m—x)=—cosz 

. . sin @ 
. SlIl(I-i—%) =cosT ° cos(z—%) =sinx e tanz = 

cos T 

These equations are all examples of identities. 

There are a vast number of trigonometric identities. However, we only need to remember a few because 

we can obtain the rest by rearrangement or substitution. This requires trigonometric algebra. 

SIMPLIFYING TRIGONOMETRIC EXPRESSIONS 

For any given angle 0, sinf and cos6 are real numbers. tan@ is also real whenever it is defined. 

The algebra of trigonometry is therefore identical to the algebra of real numbers. 

An expression like 2sinf + 3sinf compares with 2z 4+ 3z when we wish to do simplification, and 

s0 2sinf + 3sinf = 5sin 6. 

  

Example 10 ) Self Tutor 

Simplify: a 3cosb +4cosd b tana —3tana 

a 3cosf+4cosh = Tcos b tana —3tana = —2tanca 

{compare with 3z + 4z = Tz} {compare with = — 3z = —2z} 

  

ANGLE RELATIONSHIPS 

The negative angle formulae are established by reflection in the z-axis: 

sin(—0) = —sin6 cos(—0) = cos @ ANGLE 
. Lo . RELATIONSHIPS 

The supplementary angle formulae are established by reflection in the y-axis: 

sin(w — 0) = sin 0 cos(m — 0) = —cos@ 

The complementary angle formulae are established by reflection in the line y = z: 

sin(% — 0) = cos @ cos(% — 0) = sin 6 

sin 6 
  The tangent definition tan 6 = enables us to calculate the tangent ratio in each case. 
cos @ 

e R ) Self Tutor 

Simplify: a sin(—0)+ 2sin6 

COS(% ) _ sin 6 

cos(mr —6)  —cosf 
sin(—6) + 2sin 6 b 

= —sinf + 2sinf 

=sinf 
= —tan6  
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EXERCISE 9C.1 

    

    

1 Simplify: 

a sinf 4+ sinf b 2cosf +cosf ¢ 3sinf —sinf 

d 3sinf — 2sinf e tand — 3tanf f 2cos?0 —5cos?d 

2 Simplify: 
. .o 

a 3tany — =L b stz ¢ tanzcosx 
COos T cos“ T 

d 22 e 3sinz + 2cosztanx f Qt,anx 
tanz sinx 

3 Simplify: 

a 3cosf — cos(—0) b tan(—0) ¢ sin(—0) + cos(% — 9) 

d tan(m —0) e tan(% —0) f sin(Z —6) — cos(m — 6) 

sin(—0) h COS(% —0) i sin(m — 6) — sin(—0) 

cos(m — 0) cos(—0) cos(—0) 

THE PYTHAGOREAN IDENTITY 

The Pythagorean identity is established by applying Pythagoras’ theorem on the unit circle: 

sin? 0 + cos20 = 1 

We commonly use rearrangements of these formulae such as: 

sin?f =1 — cos? 0 cos?0 =1—sin%0 

  

  

  

Simplify: 

a 2—2sin’0 b cos?fsinf + sin® @ 

a 2 —2sin? 0 b cos® fsin § + sin® @ 

=2(1 —sin? ) = sin f(cos®  + sin” ) 
= 2cos? =sinf x 1 

{as cos®f+sin?60 =1} =sind 
  

EXERCISE 9C.2 

1 Simplify: 

a 3sin®60 + 3cos?6 b —2sin%6 — 2cos? 0 ¢ —cos®f —sin?0 

d 3—3sin%0 e 4—4cos’l f cos® 6 + cosfsin’ 6 

g cos’0—1 h sin?0—1 i 2cos?6—2 

1—sin2 6 K 1—cos?26 I cos20—1 

cos? 0 sin 0 —sinf



  

Example 13 ) Self Tutor 

Expand and simplify:  (cos@ — sin 6)? 

(cos § — sin §)? 

= cos? 0 — 2cos Osin 0 + sin® 0 {using (a —b)? = a® — 2ab + b?} 

= cos® 0 + sin?  — 2 cos fsinf 

=1—2cosfsinf 

  

  

Expand and simplify, if possible: 

(1 +sin6)? (sina —2)2 (tana — 1) 

(sino + cosa)? (sin 8 — cos B)* —(2 = cosa)? 

Simplify: 

(sina + tanz)(sinz — tan ) (2sin6 + 3cos0)? + (3sind — 2 cos H)? 

FACTORISING TRIGONOMETRIC EXPRESSIONS 

Example 14 LR (R TS 

Factorise: 

cos? a —sin® a tan?@ — 3tan6 + 2 

cos® a —sin® a 

= (cosa + sina)(cos @ — sin o) {using a® —b* = (a +b)(a —b)} 

tan® @ — 3tan 6 4 2 

= (tand — 2)(tand — 1) {compare with 2 — 3z +2 = (z — 2)(z — 1)} 

  

  

  

Simplify: 

2 —2cos?6 cos @ — sin 6 

1+ cosf cos2 6§ —sin? 0 

2 —2cos?0 cosf — sin 6 

1+ cosf cos2 f —sin? 0 

~ 2(1—cos?0) _ (cosf—sint] 

" 14cosf (cos 0 + sin 0) (cos8—-siH) 

~ 2(14eosH)(1 — cosb) _ 1 

- (1 4eosV) " cosf+sinf 

=2(1—cosf) 
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EXERCISE 9C.3 

  

  

  

      

            

1 Factorise: 

a 1—sin%6 b sin’a — cos®a ¢ tan’a—1 

d 2sin’3 —sing e 2cosd+ 3cos’ ¢ f 3sin?6 — 6sinf 

g tan’0 +5tanf + 6 h 2cos?0 +7cosf + 3 i 6cos’a—cosa—1 

j 3tan’a —2tana ke 2sin®z 4 Tsinx cosx + 3cos® x 

2 Solve for 0 <z < 2m: 

a 2cos’xz =sinxz+1 b sin?z=2—cosz ¢ 2cos’z = 3sinz 

3 Simplify: 

1—sin?a b tanZ 3 — 1 ¢ cos? ¢ —sin? ¢ 

1—sina tan 3+ 1 cos ¢ + sin ¢ 

d cos? b — sin? & e sina + cos o f 3 —3sin?6 

cos ¢ — sin ¢ sin? a — cos? o 6cosf 

4 Show that: 

a (cosf+sin)? + (cos —sinf)? = 2 b (sinf +4cos)? + (4sinf — cos0)? = 17 

1 . 1 . . 
¢ (1—cosh) (1+ ) =tanfsind d (1“1’,—)(81119781112 0) = cos*0 

Ccos sin 

.92 . 
cos a 4 sin” o — sina+ cosa f sin 6 1—0—.cos6'= '2 

1—tana sina — cos o 1+ cosf sin @ sin 6 

sinf  sinf 2 h 1 T 1 _ 

1—cosf 1+cosf  tanf 1—sinf 1+sin@  cos26 

Check these simplifications by graphing both sides of the equations on the same e 

set of axes. 

[0 DOUBLE ANGLE IDENTITES 
INVESTIGATION 1 

What to do: 

  

1 Copy and complete this table using your calculator. Include extra lines for angles of your choice. 

  

0 sin26 | 2sin@ | 2sinfcosf | cos20 | 2cosf | cos? O — sin® 6 
  

0.631 

57.81° 

—3.697 

  

2 Write down any discoveries from your table of values.
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3 In the diagram alongside, the semi-circle has radius 

1 unit, and PAB = 0. 

APO =6 {AAOP is isosceles} 

PON =20  {exterior angle of a triangle} 

a Find in terms of 6, the lengths of: 

  

  

i [OM] ii [AM] 

iii [ON] iv [PN] 

b Use AANP and the lengths in a to show that: 

i cosf— sin 26 i cos€=1+CO829 

2sin @ 2 cos 6 

¢ Hence deduce that: 

i sin20 = 2sinfcosf il cos20 =2cos?0 — 1 

d For what values of 6 have we proven the results in €? 

The formulae sin260 = 2sinfcos and cos20 = 2cos?d — 1 found in the Investigation are in fact 

true for all angles 6. 

Using cos?f =1—sin?6, we find cos26 = cos® 6 — sin’ @ 

and cos20 =1 — 2sin?6. 

  

   
   

  

    

So, the double angle identities for sine and cosine are: sin 260 = 2sin 6 cos 6 GRAPHING 
PACKAGE 

cos260 = cos? 0 — sin® 6 

=1—2sin%6 

=2cos?0 —1 

Example 16 

Given that sina =% and cosa = —% find: 

a sin2a b cos2a ¢ tan22a 
  

  

     

  

cos 2a b 
2 2 = 2sinacosa = cos” a — sin” « 

   sin 2a 

         {using a, b} 

EXERCISE 9D 

1 For 0 =30° verify that: 

a sin260 = 2sinf cosf b cos20 = cos®f —sin® 0 

2 If sinf =% and cosf =2, find the exact values of: 

a sin26 b cos260 ¢ tan26 

3 a If cosA=1%, find cos2A. b If sing=—2, find cos2¢.



  

  

  

  

  

       

  

If sina = % where 5 <« <, find the exact value of sin2a. 

« is in quadrant 2, so cos « is negative. Now cos?a +sina =1 
2 25 _ cosa+ g5 =1 

2 144 cos” a = 155 

cosazf% {cosa < 0} 

Using the double angle identity, sin2a = 2sinacosa 

_9(5 12 
=2(%3) (-1) 
_ 12 
=16 

If sina=—2 where m <« <3, find the exact value of: 

cos sin 2av 

If cos3=2 where 270° < 3 < 360°, find the exact value of: 

il
 

sin 3 sin 203 

Example 18 

If a is acute and cos2a = % find the exact values of: 

cos sin av. 

cos2a = 2cos’a — 1 sina = 4/1 — cos? a 

  
% =9%cos?a—1 {as « is acute, sina > 0} 

2 7 . 
costa =g . osina = 1—% 

cosa = i% 
v . osina = é 

7 cosa = Y= . 
2/2 osina = s 

{as « is acute, cosa > 0} 

If v is acute and cos2a = —%, find without a calculator: 

cos sin a. 

If 0 is obtuse and cos 20 = 7%, find the exact values of: 

cosf sin 6. 

2tan6 
Show that tan20 = ————. 

1—tan26 

LR TR T 
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Example 19 LR (R (ML) 

Use an appropriate double angle identity to simplify: 

a 3sinfcosf b 4cos?2B —2 
  

3sinf cos @ b 4cos?2B —2 

= 2(2sinf cos ) = i(zm;(z;:; -1 
= 2cos 

=2cos4B 
= % sin 26 

  

Use an appropriate double angle identity to simplify: 

a 2sinacosa b 4cosasina ¢ sinacosa 

d 2cos’3—1 e 1—2cos’¢ f1-2sin’N 

g 2sin®M —1 h cos? a —sin? « i sin’a —cos®a 

i 2sin2Acos2A ke 2cos3asin3a I 2cos?46 —1 

m 1-—2cos?33 n 1-—2sin?5a o 2sin?3D —1 

p cos224 —sin?24 q cos? (%) — sin? (%) r 2sin?3P — 2cos? 3P 

Find the exact value of [cos 15 +sin %} %, 

Show that: GRAPHING 

a (sinf+cosf)? =1 +sin20 b cosf —sin? 0 = cos 20 " 

Check your answers by graphing both sides of the equations on the same set of axes. 

Solve exactly for  where 0 < x < 27 

a sin2x +sinx =0 b sin2x —2cosz =0 ¢ sin2z +3sinz =0 

Use a double angle identity to show that: 

wi2p 1 1. 29 _ 1, 1. a sin”f = 5 — 5 cos20 b cos?0 = 5+ 5cos20 

Solve sinfcosf =+ for —7w <0 < 7. e
 

Solve for 0 <z < 27, giving exact answers: 

a cos2x —cosz =0 b cos2z+3cosz =1 ¢ cos2z +sinx =0 

d sindx = sin2x e sinz+cosx:\/§ f 2cos?z =3sinx 

The curves y = cosz and y = cos2x + 1 are 

graphed alongside for 0 <z < 2. 

a Identify each curve. 

b Find the exact coordinates of A, B, C, and D. 

  

  

]
Y
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  INVESTIGATION 2 

Usually we write functions in the form y = f(z). 

For example: y =3z +7, y=22—62+8, y=sinx 

However, when we describe relations, it is often useful to express both = and y in terms of another 

variable ¢, called the parameter. In this case we say we have parametric equations. 

What to do: 

1 a Use technology to plot 

{(z, y) | © = cost, y=sint, 0<t< 27} 

Use the same scale on both axes. e 

Note: Your calculator will need to be set to radians. R CEONS 

b Describe the resulting graph. Is it the graph of a function? 

¢ Evaluate 22 + y?. Hence determine the equation of this graph in terms of 2 and y only. 

2 Use technology to plot: 

a {(z,y)|z=2cost, y=sin2t, 0 <t <2} PARAMETRIC 
GRAPHING 

b {(z,y)|x=2cost, y=2sin3t, 0<t<2n} PACKAGE 

¢ {(z,y) |z =2cost, y=cost—sint, 0 <t < 2n} 

d {(z,y)|x=rcos’t+sin2t, y=rcost, 0 <t<2r} 

e {(z,y)|x=cos®t, y=sint, 0<t<2n} 

  REVIEW SET 9A 

  

      
  

  

    

  

  

  

  

  

    

1 4y 

"‘:0—75‘ 9—41 0 1 1at 

it 
! = 

  

                                          

Use the graph of y = cosz on the domain 0 < x < 47 to solve, correct to 1 decimal place: 

a cosx=-04 b cosz=0.9 

2 Solvefor 0 <z <8: 

a sinz = 0.382 b tan§ = —0.458 

3 Solve: 

a cosx =0.4379 for 0 <2 <10 b cos(z —2.4) = —0.6014 for 0 <z <6
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& Solve for 0 < x < 2m: 

a 2sinz = —1 b 2cosz—1=0 € 2cos2zx+1=0 

5 Solve algebraically for 0 < z < 27, giving answers in terms of 7: 

a tan®2z =1 b sin?z—sinz—2=0 ¢ 4sinz=1 

6 Find the exact solutions of: 

a V2cos(z+3)—1=0, 0<z<4r b tan2z —3=0, 0<z <2 

7 An ecologist studying a species of water beetle estimates 

the population of a colony over an eight week period. 

If t is the number of weeks after the initial estimate is 

made, then the population in thousands can be modelled by 

P(t)=5+2sin T where 0<¢<8. 

a What was the initial population? 

b What were the smallest and largest populations? 

< During what time interval(s) did the population exceed 

  

6000? 

8 Simplify: 

a 3cos(—6) — 2cosf b cos(3F —0) ¢ sin(6+ %) 

1—cos26 sina — cosa f 4sin? a0 — 4 

1+ cos sin? o — cos2 8cosa 

9 If sina=—-2, 7<a<3E, find the exact value of: 

a cosa b sin2a ¢ cos2a 

in %0 — si 

10 Show that ——=2— 502 a4, 
cos2a —cosa + 1 

11 Suppose f(z)=cosz and g(z) =2z. Solve for 0 <z < 27 

a (fog)(z)=1 b (g0 f)(x)=1 

12 Consider triangle ABC shown. A 

a Show that cosa = 2. Sl 

b Show that 2 is a solution of 3z% — 25z 4 48 = 0. 

¢ Find z by solving the equation in b. rem o 

5cm
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A 

1 Consider y =sin 3 on the domain —7 < 2 < 7. Use the graph to solve, correct to 1 decimal 

  

  

  

  

  

                                                                

place: 

a sing =-09 b sing = % 

Y l 
I y:sip% 

0:5 l 

A Ao AR o AR A 7 A Y T T T A S e A | 

—0:5 

. | 
2 Solve for 0 <z < 27 

a cosz=0.3 b 43+ 8sinx = 50.1 

3 Solve for 0 <z < 10: 

a tanz =4 b tan{ =4 ¢ tan(z —1.5) =4 

4 Solve for 0 <z < 27 

a 2sin3z=—3 b fitan%:—l ¢ cos2z =+/3sin2z 

5 Find exact solutions for x given —7 <z < 7: 

a tan(er%):f\/?_) b tan2z = —/3 ¢ tan’z—3=0 

6 Find the x-intercepts of: 

a y=2sin3z++3 for 0<z< 2 b y=\/§sin(z+%) for 0<z<3m 

In an industrial city, the amount of pollution in the air 

becomes greater during the working week when factories 

are operating, and lessens over the weekend. The number 

of milligrams of pollutants in a cubic metre of air is given 

by P(t) = 40 + 12sin(% (¢t — 31)) where ¢ is the 

number of days after midnight on Saturday night. 

a What is the minimum level of pollution? 

b At what time during the week does this minimum 

level occur? 

Simplify: 

3 .2 cos® 6 — 1 
a cos® 0+ sin® 6 cosd b — — 

sin 6 

o, 
¢ 5 5sin0 g Snf-1 

cos 6 
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9 If sinA=5 and cosA =L, find: 

        

a sin24 b cos24 

10 Show that: 

COS_9 lareing _ _2 b (1 + ) (cos 0 — cos? 0) =sin?6 
1+sinf cos 6 cos 6 cos 6 

11 Solve 22 _ /5 for 0 <0< Z. 
sin 26 

12 Find exactly the length of [BC]. D 

5m 

@ 

A Up 
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OPENING PROBLEM 

A group of people are involved in a business meeting. 

Alice looks at Bob and Bob looks at Clare. Alice is married 

but Clare is not. 

Things to think about: 

a Do we know whether Bob is married? 

b Can we prove that a married person looks at an 

unmarried person? 

  

¢ What is necessary for a mathematical argument to be 

convincing and complete? 

Greek mathematicians more than 2000 years ago realised that progress in mathematical thinking could 

be brought about by conscious formulation of the methods of abstraction and proof. 

By considering a few examples, we might notice a certain common quality or pattern from which we 

could predict a rule or formula for the general case. In mathematics this prediction is known as a 

conjecture. Mathematicians love to find patterns, and try to understand why they occur. 

Experiments and further examples might help to convince you that the conjecture is true. However, 

problems will often contain extra information which can sometimes obscure the essential detail, 

particularly in applied mathematics. Stripping this away is the process of abstraction. 

For example, by considering the given table of values we may conjecture: 

“If a and b are real numbers, then a < b implies that a? < b2.” 

However, on observing that —2 < 1 but (—2)? £ 12 we have a 
counter example. 

  

In the light of this we reformulate and refine our conjecture: 

“If @ and b are positive real numbers then a < b implies a?® < b%.” 

The difficulty is that this process might continue with reformulations, counter examples, and revised 

conjectures indefinitely. We can only be certain that the conjecture is true if it is proven. 

WHAT IS PROOF? 

Science relies on experimental evidence. Mathematics relies on logic and reasoning. 

A mathematical proof is a correct argument which 

establishes the truth of a mathematical statement. 

A mathematical proof: 

e starts with assumptions called hypotheses 

e is a sequence of correct mathematical steps 

e ends in a conclusion. 

A mathematical proof can include logic, calculation, or a combination of the two. We will discuss both 

of these during the Chapter.
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In the Opening Problem, we do not know whether or not Bob is married, so we need to consider both 

cases. We could write the following proof: 

Proof: 

B ob is either married or he is not married. 

e If Bob is married, then when Bob looks at Clare, a married person looks at an unmarried person. 

e If Bob is not married, then when Alice looks at Bob, a married person looks at an unmarried 

person. 

In both cases, a married person looks at an unmarried person. 

These cases exhaust all possibilities, so a married person always looks at an unmarried person. 

In this proof, notice that: 

“Alice is married” is a hypothesis. 

The conclusion is that a married person looks at an unmarried person. 

This style of proof is called proof by exhaustion, because we have considered all possible cases: 

Bob is married, and Bob is not married. 

This proof contains logic only. There is no calculation. 

THE PURPOSES OF PROOF 

Mathematical proof is important: 

to convince 

Proofs help you decide if and why a statement is true or false. This is important when the result 

seems strange. 

to understand 
Proofs help you understand how and why all the different assumptions play a part in the result. 

to communicate 

Mathematicians use proofs to communicate and debate ideas with each other. 

to organise 

Proofs help you organise your thoughts. 

to discover new mathematics 
By carefully examining each step of a proof, mathematicians discover new mathematics. 

ADVICE ON WRITING PROOFS 

State what you are proving. Make it clear when you have reached your conclusion. 

Include enough detail to make your proof easy to check. 

Your proof should be written in good English, including simple, complete, correct sentences. 

Present your calculations on the page in a manner which makes them easy to follow. Use your layout 

to clearly separate the parts or different cases considered in your proof. 

Use diagrams when appropriate to give a visual representation of the situation. 

It is often useful to use examples when exploring a problem. However, a single example is usually 

not sufficient to complete a proof. 

Check to see where you have used each hypothesis. If you have not used a particular hypothesis 

then either: 

» you did not need it, or 

» your proof should have made use of it, and is incorrect! 

Do not expect to write a complete proof the first time. Expect to use rough working first, and then 

write a neat version.
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NI LOGICAL CONNECTIVES 
Mathematical language uses logical connectives to link mathematical statements together: 

Connective Symbol Formal name 

conjunction 
  

  

disjunction 

e = e 
[T andonly it || equivalene | 

  

We can illustrate the use of these connectives using variables such as A, B, C, .... 

For example, (A A B) = C means “A and B implies C”. The two arguments (A A B) and C 

are connected by the connective =>. The argument (A A B) is itself made up of arguments A and 

B, connected by the connective A. It is therefore helpful to think of statements as mathematical trees, 

connected by the logical connectives. 

NEGATION 

The negation of a variable A is its opposite. If A is true then —A is false, and vice versa. 

For example: 

e the negation of “Today is Wednesday” is “Today is not Wednesday” 

o if we know z € Z, the negation of “x is an even integer” is “z is an odd integer” 

o if we know x € R, the negation of “x is an even integer” is “z is not an even integer”, since = 

might be an odd integer, or it might also be a non-integer. 

IMPLICATIONS 

Implications commonly arise when we deduce one thing from another. 

For the implication A = B, we start with the statement A, and from it we deduce the statement B. 

The statement A is called the hypothesis, and B is called the conclusion. 

In English there are many words we can use to show an implication. 
We use .. to mean 

For example: implies “therefore”. 

S0 
A hence B. 

thus 

therefore 

  

The converse of the implication A = B is the statement B = A. 

It is important to recognise that while the implication A = B may be true, its converse may not be 

true. 

For example, the statement “If = =2 then 22 = 4” is true. However, its converse “If x2 =4 then 

x = 2" is false, since x may be —2.
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EQUIVALENCE 

Two statements A and B are equivalent if both A = B and B = A. In this case we can say A is 

true if and only if B is true. 

For example, the statement “If x = —2 or 2, then 22 = 4” is true. The statement “If 22 =4 then 

2 =—2or 2" is also true. Therefore, = —2 or 2 < 2> = 4. 

EXERCISE 10A 

1 For each statement, state its negation: 

a The cat is black. bz is prime. ¢ The tree is deciduous. 

2 State, with justification, whether each statement is true or false: 

a If 22=9 then 2=3. b If 2 =3 then 2®>=09. ¢ x=3 ifand only if 22=09. 

3 State, with justification, whether each statement is true or false: 

a Ifz is positive then /x € R. b If \/z €R then x is positive. 

¢z is positive if and only if /z € R. 

L a Write the converse of the statement “If Socrates is a cat then Socrates is an animal”. 

b Is this converse true or false? 

5 Determine whether A and B are equivalent: 

a A 2yz=0, B: (z=0)V (y=0)V (2=0) 

b A: ziseven, B: z?iseven 

6 There are four cards on a table. Every card has a letter on one 

side and a number on the other. With the cards placed, you see: 

D 3 K| |7 

This problem is a well 

studied logic test, devised 
  

in 1966 by Peter Wason. 

  

                

Identify precisely which cards you need to turn over, and which OAQ 

you do not, to establish the truth of the statement: “Every card < 

which has a D on one side has a 7 on the other”. 

V 

[NEINT PROOF BY DEDUCTION 
Throughout the course already, we have used algebra to show different results. In cases where we are 

given some information (the hypothesis) and are asked to prove something, we use a chain of implications. 

This is called proof by deduction. 

We have mostly used the therefore symbol *.-.” to indicate our implications, but we could have also used 

the implication symbol “=". 

Since these arguments only need to go from the starting information to the conclusion, we also call this 

type of proof a “left-to-right” proof.
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  INVESTIGATION 

Pythagoras’ Theorem is one of the most famous results in mathematics: 

If a right angled triangle has sides a, b, and hypotenuse c, then a® + b% = c2. 

Proof by pictures: 

The pictures below each show four copies of the original triangle, in different arrangements. 

a b a b 

[ ; ; 
a 

a a a 

) 
b a a b 

In each figure, the total area is (a + )2, and the shaded area is 4 x %ab = 2ab. 

the unshaded areas are equal 

A =a’+ 

In 1968, E. Loomis collected around 365 different proofs in his book The Pythagorean Proposition 

(National Council of Teachers of Mathematics, Washington). It might seem strange to have so many 

different proofs of the same thing, given that just one correct proof establishes the theorem. However, 

one purpose of proof is to help us understand the result, and different proofs can help develop this 

understanding. 

What to do: 

1 The sequence of pictures below shows shears and translations of parallelograms. Explain how 

the sequence proves Pythagoras’ Theorem. 

           g G & 
A 

2 The sequence of pictures below shows shears and rotations of triangles. Explain how the sequence 

proves Pythagoras’ Theorem. 

oy o o o o 
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3 The figure below shows a jigsaw made from three pieces, in two arrangements. Explain how 

these prove Pythagoras’ Theorem. 

b a 

In a numerical or algebraic argument, we perform operations at each deductive step. For a proof by 

deduction to be valid, only a correct implication is required, rather than equivalence. 

Example 1 LR R TS 

a Prove by deduction: “If < —5 then 2% > 25.” 

b Explain why the converse is not true. 

  

a If x<—5 then |z|>5 {geometric definition of absolute value} 

ooz > 5 {squaring both sides} 

x> 25 {|z|?> ==} 

b The converse would be: “If 22 > 25 then z < —5.” 

This is not necessarily true because 62 > 25, but 6 > —5. 

  

EXERCISE 10B 

1 a Prove by deduction: “If z=—2 then 2? —x—6=0." 

b Explain why the converse is not true. 

2 In the diagram alongside, three semi-circles have been constructed 

using the sides of a right angled triangle as diameters. The 

areas of the semi-circles are A, B, and C' as shown. Prove that 

A+ B=C. 

a2 2 _ 
3 Suppose ‘1; b GZN Let 2 =qa ) b ; v —22ab, This result allows us to make 

and z =a”+0b". Prove that z° +y° = 2°. right angled triangles with 
sides which are all integers. 

  

L Prove that the sum of three consecutive integers is divisible by 3. 

The product of three consecutive integers is increased by the middle integer. Prove that the result is 

a perfect cube. 

Hint: Let the middle number be x.
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a? + b2 
  6 Prove that >ab forall a,beR. 

7 Prove by deduction that sin 26 tan# = 2sin? 6. 

8 Consider a 3-digit number “abc”, a # c. Written backwards, it is “cba”. Let S be the result when 

the smaller of the two numbers is subtracted from the larger. When S is written backwards and the 

result is added to S, prove that the sum is always 1089. 

For example: 276 backwards is 672, so S =396 and 396 + 693 = 1089. 

9 The following “proofs” by deduction are incorrect. Identify the incorrect step(s) in each case: 

a  da?=3z b (z+3)(2—2)=4 

LA =3 S x+3=40r 2—z=4 

x:% sor=1or z=-2 

HISTORICAL NOTE 

Charles Lutwidge Dodgson (1832 - 1898) was a lecturer of 

mathematics at Christ Church college, Oxford. A curious and 

controversial figure, he is best known by his pen name, Lewis 

Carroll, under which he wrote a number of books including Alice s 

Adventures in Wonderland (1865) and Through the Looking-Glass 

and What Alice Found There (1871). 

  

In his latter years, Carroll wrote several more mathematical books, 

including The Game of Logic (1886) and Symbolic Logic (1896). 

These books include numerous “nonsense” statements written to 

challenge the reader as to what, if anything, could be deduced 

from them. 

  

For example, consider these statements from The Game of Logic: 
Charles Lutwidge Dodgson 

e “No bald person needs a hair-brush; No lizards have hair.” 

We can deduce that since lizards do not have hair, they do not need a hair-brush. 

e “Some oysters are silent; No silent creatures are amusing.” 

We can deduce that silent oysters are not amusing, but we cannot say anything about oysters 

which are not silent. 

e “No riddles interest me that can be solved; All these riddles are insoluble.” 

We can deduce nothing from these statements, because no comment is made about whether 

insoluble riddles interest him. 

Think about these for yourself: 

e Toothache is never pleasant; Warmth is never unpleasant. 

e All uneducated men are shallow; All these students are educated. 

e No lobsters are unreasonable; No reasonable creatures expect impossibilities. 

e No misers are generous; Some old men are not generous. 

e Sugar is sweet; Some sweet things are liked by children. 

e “Isaw it in a newspaper; All newspapers tell lies.” 

e All wasps are unfriendly; No puppies are unfriendly.
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TSR PROOF BY EQUIVALENCE 
In proof by deduction, we were only concerned with moving in one direction. 

  

This means that if we want to show that two statements A and B are equivalent, then we would need to 

prove both A= B and B = A separately. 

However, if we can construct an argument so that each deductive step is an equivalence, then we will 

prove A= B and B = A at the same time. 

For example, to deduce the solutions of (z+1)* =23 +1 we 

can write the following series of equivalent statements: 
Reasoning by equivalence 

is stronger than deduction 

because the converse must 

also be true in every step. 
(z+12=2%+1 

s 24+322+3z+1=2%+1   

< 322 +3z=0 

= 3z(x+1)=0 

& =0 or x=-1 

  

This chain of reasoning relies on the facts that: 

e two equations are equivalent if they have precisely the same solutions 

e two functions p(x) and g(x) are equivalent if p(z) = g(z) forall z € R. 

To maintain mathematical equivalence, we can: 

e add or subtract the same term from both sides of an equation 

e multiply or divide both sides of an equation by a non-zero term 

e substitute for an equivalent sub-term, for example by replacing a term 

by its factored or expanded form. 

There are some other operations which maintain equivalence, for example some of the rules of logarithms 

with positive terms. 

However, squaring or taking square roots of both sides of an equation does not maintain equivalence! 

Given a? = b%, taking the square root of both sides gives a = b. However, in doing this we have 

ignored the possibility that a = —b. 

Instead, we use the difference between two squares result as follows: 

&2 =2 

< a?—*=0 

& (a—b)la+b)=0 {difference between two squares} 

& a—b=0 or a+b=0 {null factor law} 

& a=0b or a=—b 

< a==%b   

Using this procedure, equivalence is maintained. With experience, mathematicians compress this working 

into a single step.
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T O R (T 

Find the smallest positive integer a for which 2 + (a —2)z +a = 0 has real solutions. 

  

  

22+ (a—2)r+a=0 

      

    

  

  

= (z+a;2)2—<a;2)2——a=0 {completing the square} 

—2)\2 =9 o (sroziy o=t , 
The equation has real solutions if and only if 

(a—2)2_a>0 

& (@a—2)%*—4a>0 

& a>—8a+4>0 
S (@a—4)2-16+4>0 

& (a—4)?>12 

& a—4>\/fi or a—4<—\/fi 

& a>4+V12~746 or a <4—V12~0.536 

the smallest positive integer a for which the equation has real solutions is a = 8.       

EXERCISE 10C 

1 Prove that: 

a (a+0)?%—(a—0b)?%=4dab b (a+0)?—4(a—b)?=3b—a)(3a—0b) 

2 Find the smallest positive integer a for which 2% 4 (a — 3)2 +2a = 0 has real solutions. 

3 Prove that (z —y)° + (z —y)®> =0 ifand only if x=y. 

4 a Expand and collect like terms:  (n? — 2n + 2)(n? + 2n + 2) 

b Hence find all integers n such that n* +4 is prime. 

5 a Provethat (k+1)*— (k—1)* =4k 

b Hence find two square numbers that have difference: 

    

  

    

i 40 i 100. 

6 The following “proofs” end in nonsensical results. Identify the incorrect step(s) in each case: 

a a="b b $+10_5=4a:740 

5 z—6 13—z 

= a” =ab o TH1I0=5@—6) _ o —40 
& a® —b? = ab— b z—6 T 13-« 
& (a—b)(a+b)=bla—0b) - 4o —40 4z —40 

& a+b=b 6-c  BB-o 
& 2a =a = 6- ”é = 13 - 

< 2=1 < -
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7 The following “proofs” give correct results but their methods are incorrect. Identify the incorrect 

step(s) in each case: 

  

  

    

a 6r — 12 = 3(z — 2) b 22— 6x+9=0 
& 6r—12+3(x—2)=0 o 2 —6x = —9 
& 122 —24=0 & z(z —6) = 3(-3) 

& =2 & r=3 or x—6=-3 

< r=3 

8 The sum of fractions % + 1—12 = % has the form — + Lo where m =4, or alternatively 
m  3m 3m 

the form ;+ L _ L \Ghere n=3. 
n+l ni+n n 

. .1 1 4 . 1 1 1 
a Prove by equivalence: i — + = 3 i oy + o for n #0, —1. 

b Is it accurate to say that ! + ! is equivalent to Ly Explain your answer. 
n+1 nZ+n n 

LIEETEEEN 0 DIRECT AND INDIRECT PROOFS 
In a direct proof we start with the hypothesis and work forward to the conclusion. 

8 5 5 b 
For example, here is a direct proof that if @ <b then a < %: 

  

Proof: a<b 

= i< {dividing by 2 which is > 0} 
a  a a b . a . 

= 3t3<5+3 {adding 5 both sides} 

= a<2tl 
2 

In proof by contradiction we deliberately assume the opposite to what we are trying to prove. By 

a series of correct steps we show that this is impossible, hence our assumption must be false, and so 

its opposite is true. We call this an indirect proof because we do not start with the hypothesis. 

For example, here is a proof by contradiction that if a < b then a < GT-H): 

Proof (by contradiction): 

For a <b, suppose that a >   

a+b 
  = 2> 2( ) {multiplying both sides by 2} 

  = 2a>a+b 

= az=b {subtracting a from both sides} 

This is a contradiction to our assumption, so the supposition must be false and 
. b 

the alternative, a < % must be true. 

1 Can a proof by contradiction be considered a proof by deduction or proof by equivalence? 

2 Is an indirect proof “cheating”?
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DI snNmons 
THEORY OF KNOWLEDGE 

In mathematics we clearly define terms so there is no misunderstanding of their exact meaning. 

For example: 

o A rational number is a number which can be written in the form 2 where p,qEZ, q#0. 
q 

e An integer n is even if n = 2k for some integer £. 

e An integer n is odd if n =2k + 1 for some integer k. 

We can understand the need for specific definitions by considering integers and rational numbers: 

e 2 is an integer, and is also a rational number since 2 = %. 

4 ° is a rational number, and is also an integer since 35 = 2. 

. is a rational number, but is not an integer. 

W
l
 
o
l
 

1 Why is it important that mathematicians use the same definitions? 

2 Words such as similar, or, function, domain, range, period, and wave are common words 

in English, but also have different or more specific mathematical definitions. 

For each of these words, discuss the difference between their mathematical definition and 

their common use in English. 

3 What is the difference between equal, equivalent, and the same? Why is it important to 

distinguish between these terms? 

4 Are there any words which we use only in mathematics? What does this tell us about the 

nature of mathematics and the world around us? 

Example 3 LR TR (TTT8 
— — This Example requires 

Prove that 0.13 € Q. Let £ =0.13 =0.1313131313.... T 

100z = 13.13131313.... rational numbers. 

100z =13+« 

99z = 13 
13 

I:@ 

  

e o) Self Tutor 

Prove that the sum of any two rational numbers is also a rational number. 

  

Proof: 

Let = and y be two rational numbers. 

By definition, there exists p, ¢ € Z, ¢ # 0 so that z 

w
3
 

Q
s
 

By definition, there exists 7, s € Z, s #0 sothat y =



We have written this proof in great detail. However, the whole 

point of a proof is that you should be able to check each step 

easily. 

Mathematicians sometimes choose to leave out steps to make 

the argument shorter and easier to read. If the reader trusts the 

writer this is fine. However, it should always be possible to fill 

in the missing steps. 

Learning which steps to include is part of learning how to write 

a mathematical proof. 
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So, I+y:g+1=ps+m 
q s gs 

Since p, ¢, r, s are all integers, ps -+ rq is an integer which we call P. 

Since g, s are non-zero integers, g¢s is a non-zero integer which we call Q. 

ps+rq P T4y = =— where P,Q€Z, Q#0 qs Q 
by definition, x +y is a rational number. 

  

   

    

    
    

Try to include steps of about the 

same “size”. Sudden large jumps in 

the proof make people suspicious! 

EXERCISE 10D 

1 

2 

0
 

©
 

N
 

o
 

wu
i 
o
>
 

Prove that 0.9 € Z. 

Prove that: 

a 04e€Q b 023cQ c 0.0719€Q 

4-+2 4-42 4—42 

Vi BV Bvap 
Prove that the difference between any two rational numbers is also a rational number. 

c Z.   Prove that the infinite geometric series (4 — \/5) + 

Prove that the product of any two rational numbers is also a rational number. 

Prove that the product of two odd integers is odd. 

Prove that if p and ¢ are odd integers then p? — ¢? is divisible by 8. 

Prove that if p and ¢ are consecutive odd integers, p > ¢, then p* — ¢ —2 is divisible by 24. 

If a, b, c are integers and az? 4 bx +c = 0 has rational root T in lowest terms, prove that s is a 
S 

factor of a, and r is a factor of c. 

Mathematical definitions are very difficult to write. They are often the result of careful thought by 

many experienced mathematicians. Once commonly accepted, they rarely change, because if they did 

it would cause great confusion. 

Definitions collect similar examples together. When attempting to understand something, it is always 

worth building up a collection of examples which do and do not satisfy the definition. 

Discuss how you could define a chair.
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THEORY OF KNOWLEDGE 

An axiom is a statement that is taken to always be true. Axioms form the foundation for proofs of 

all results and theorems in mathematics. 

For example, these are the axioms for addition and multiplication on the real numbers: 

Axiom I:  Associativity: a+ (b+c¢)=(a+b)+c and ax (bxc)=(axb)xc 

Axiom 2: Commutativity: a+b=b+a and axb=0bXxa 

Axiom 3: Distributivity: a x (b+c¢)=axb+axc 

Axiom 4: Additive identity: @+ 0= a and Multiplicative identity: a X 1=a 

Axiom 5:  Additive inverse: a+ (—a) =0 and Multiplicative inverse: a x a™! = 1. 

Using only these axioms, we can prove that 0 x z =x x0=0 forall x € R. 

  

      

Proof: 

0=0+0 

Oxz=(0+0)xx {multiplying both sides by =} 

S 0xz=0xz+0xzx {Axiom 3} 

Oxz+(—(0xz)=(0xx+0xxz)+(—(0xz)) {adding the additive inverse 
of 0xx} 

Oxz+(—(0x2)=0x2z)+[0xz+(—(0xz))] {Axiom 1} 

0=0xz+0 

s 0=0xz {Axiom 4} 

Oxz=0=xzx0 {Axiom 2} 

1 Is an axiom a definition, an assumption, both, or neither? 

2 Is it necessarily practical to only use axioms to prove results? 

Axioms are important because they cannot be proven. In some ways, they are similar to the 

fundamental Laws of Physics and other sciences. 

3 Some fundamental laws of physics, such as Newton’s Laws, have been verified via strong 

experimental evidence and therefore are generally accepted. Why does this not work for 

mathematical axioms? 

In 1939, Austrian mathematician Kurt Gédel proved that there does not 

exist any set of consistent axioms that is able to prove everything. In other 

words, there will be results that cannot be proved. This result is known 

as Godel’s incompleteness theorem. 

   
4 Does this mean that we must accept unprovable results as axioms? 

   
5 Are there an infinite number of axioms? /(1 

Kurt Gidel
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In 1637, French mathematician Pierre de Fermat famously claimed that the equation a™ +b" = c" 

where n > 2, n € N has no integer solutions for a, b, and ¢. He scrawled this in the margin of a 

copy of Arithmetica, claiming that his proof was too large for the margin to contain. 

This statement became known as Fermat’s Last Theorem. It remained unproved for 350 years until 

British mathematician Andrew Wiles proved it in 1994. Whether or not Fermat’s supposed proof 

was valid is debatable, as Wiles required modern mathematical methods from after Fermat’s time. 

6 Are we discovering mathematics or inventing it? 

7 Can two people “discover” the same thing? 

REVIEW SET 10A 

1 The roots of f(x) = x?+ px +q are a and b. Prove that ¢ = ab and p= —(a +b). 

2 Prove that: 

a 29¢€7Z b 038¢Q 

3 State the negation of each statement: 

a The boy has blue eyes. b =z is larger than 4. 

4 State, with justification, whether each statement is true or false. 

a If a function f is periodic with period p, then f(x + p) = f(x) for all . 

b If f(z+p)= f(xz) forall z, then f is periodic with period p. 

¢ f is periodic with period p if and only if f(z +p) = f(z) for all a. 

5 Prove that 9a% + b2 > 6ab for all a, b € R. 

6 a Prove by equivalence that tan?6 — sin® § = tan? 6 sin® 6. 

. . 1 —sin? 0 
b i Prove by deduction that Li; = cosf. 

cos 

ii Explain why the argument in i cannot be strengthened to equivalence for all 6. 

7 Prove that the quotient of two non-zero rational numbers is also a rational number. 

8 a Evaluate the following, and state whether the result is prime or composite: 

i 18428 i 2% +33 i 3% +43 iv 43 +53 

b Prove that k% + (k+1)% = (26 + 1)(k%® + k + 1). 

¢ Hence prove that the sum of two consecutive positive cubes is always composite. 

REVIEW SET 10B 

1 Let p(z) =2% + 2bz + c and define q(z) = p(x —b). Prove that g(x) = q(—x) for all z. 

2 Prove that GTH > Vab forall a,be R,
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3 Consider the statement: “If x is acute then sinx is positive”. 

a Is the statement true or false? b Write the converse of the statement. 

¢ Is the converse true or false? 

4 Determine whether A and B are equivalent: 

a A: zisnotprime, B: x is composite 

b A: x and y are both odd integers, B: zy is odd 

Prove that if k is an odd integer then k* + k% —k — 1 is divisible by 8. 

6 Prove that, in an equilateral triangle, the sum of the distances from any point in the triangle to 

the three sides is a constant. 

7 Prove that the difference between the two digit numbers “ab” and “ba” is always divisible by 9. 

8 Identify the incorrect step in the following “proof™: 

—6=-6 

9—-15=4-10 

32-3x5=22-2x5 
2 F-2x3x8+(5)°=22-2x2x5+ (8’ 

(-9 = (-3 
3-5=2-% 

3=2 e
 

O
O
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  OPENING PROBLEM 

Suppose we add water to a container at a constant rate. The depth of the water increases over time. 

Things to think about: 

a Think about the graph of the volume of water added against time. 

i Can you explain why this graph is a straight line passing through the origin? 

ii. What does the gradient of the straight line tell us? 

b Think about the graph of the depth of water against time. 

i Can you explain why this graph is a straight line for a cylindrical container? 

      time 

¢ By examining the shape of each container, can you predict the depth-time graph when water is 

added at a constant rate? 

    
Use the water filling demonstration to check your answers. DEMO 

  

  

  

  

            
  

d Consider the depth-time graph alongside. 

i How can we measure the average rate at which - 

the depth increases from ¢ =5 to t = 10 

seconds? 5 

ii How can we measure the instantaneous rate at 

which the depth is increasing at the instant when " 

t =8 seconds? 
i 

. ime (SJ
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If the relationship between two variables is a straight line, the gradient distance 

of the line tells us the rate at which one variable changes with respect 

to the other. 

For example, in a travel graph showing distance against time, the 

gradient of a straight line segment tells us the speed of the object. . 
time 

In the real world, rates such as speed are constantly changing. Their travel graphs are curves rather than 

straight lines. In order to calculate the instantaneous speed of an object, we need a branch of mathematics 

called differential calculus. 

Differential calculus deals with rates of change. It has widespread applications in science, engineering, 

and finance. 

PSRN RATES OF cHaNGE 
A rate is a comparison between two quantities with different units. 

We often judge performances by rates. For example: 

e Sir Donald Bradman’s average batting rate at Test cricket level was 99.94 runs per innings. 

e Michael Jordan’s average basketball scoring rate was 30.1 points per game. 

e Rangi’s average typing rate is 63 words per minute with an error rate of 2.3 errors per page. 

CONSTANT RATES OF CHANGE 

Suppose water from a hose is used to fill a Time minutes) | 0 | 1 [ 2| 3] 4] 5 
swimming pool. The volume of water in the - 

pool is recorded at 1 minute intervals in the table Yolume (litres) U 

alongside. +15 +15 +15 +15 +15 

  

  

Notice that the volume of water increases by the same amount A volume (litres) 

each time interval. The rate of change in volume is constant, 

so the graph of volume against time is a straight line. 

          

  

  

  

The gradient of the line gives the rate of change: 

  

15—-0 
rate of flow =   

  

      = 15 litres per minute 
                      

EXERCISE 11A.1 

1 The table alongside shows the Time (seconds) nm 90 | 120 

distance travelled by a jogger at nm 570 1 360 

30-second intervals. 

a Is the jogger travelling at a constant speed? Explain your answer. 

=
 

| 
Ot
 

o
o
   

b Draw the graph of distance against time. 

¢ Find the speed of the jogger in metres per second.
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2 This graph shows the height of a seedling during its first A height (cm) 

10 weeks. 80 

a Is the height changing at a constant rate? Explain 60 

your answer. 

b Find the rate of change in height. 40 

20 

i 
o ime (}weks») 

0 2 4 6 8 10 

3 Find the rate of change for each function. Do not include units in your answer. 

a Ay b Ap < As 

- > - > - = i 
-2 T -2 t 2 7 

-2 2 2 

v v v                                                     

4 Find the rate of change for the function f(z)= 2z — 3. 

[
N
 

AVERAGE RATES OF CHANGE 

In most real-world situations, rates of change are not constant. They vary over time. 

  

For example, this graph shows the temperature of a glass of temperature (°C) 

water which is left in the sun. The graph is not a straight 40 
line, which means the rate of change in temperature is not 

constant. The temperature increases quickly at first, and 30 

then more slowly as time goes by. 

  

  

  

  

  

  

                            
In such cases, we can find an average rate of change over 20 

a particular time interval. 
10 

For example, from time ¢ =0 to t = 2 minutes, the 

temperature increases from 5°C to 20°C. So, the average 0 time ( imtesj 

—5 
rate of change is   = 7.5°C per minute. 

In the context of functions, we say that: 

The average rate of change in f(z) from 

f(b) — fla) 
b—a 

This is the gradient of the chord [AB]. 

r=a to =0 is 
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EXERCISE 11A.2 

1 Aileen is driving from Amsterdam to Zurich. This graph 

shows the distance travelled against time. 

a Did Aileen travel at constant speed? Explain your 
answer. 

b Find Aileen’s average speed for: 

i the first 5 hours the final 5 hours. 

2 Chris went hiking in the mountains. His elevation 

above sea level is shown on this graph. 

Find Chris’ average rate of change in elevation 

from: 

a t=1hour to t=2.5 hours 

b ¢ =23.5hours to ¢t =6 hours. 

  

  

  

  

  

  

  

                          
  

  

  

  

  

  

  

  

                                

A distance (km) 
800 

600 

400 

200 

00 2 4 6 tirge hol(;S») 

40()‘ elevation (metres) 

300 

200 

100 

% 2 3 4 5 6   
3 For each function, find the average rate of change in f(z) from A to B: 
  

a AY 
y — J(=), b 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                          

time (hours) 
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4 Consider the graph of f(z) = z°. 

a Find the average rate of change in f(z) from: 
  

i z=1t =2 

i z=1to z=1.5 

ii =1 to z=1.1 

v z=1 to x=1.01 

v z=1 to z=1.001 

  

  

  b Comment on your answers in a. 

  

  

                

Suppose the speedometer in a car indicates that you are 

travelling at 60 km per hour. This is not an average speed, 

but an instantaneous speed. 1t is the speed at which you are 

travelling at that particular instant. 

    

INVESTIGATION 1 

A ball bearing is dropped from the top of a tall building. The 

distance D it has fallen after ¢ seconds is recorded, and the 

following graph of distance against time is obtained. 

Consider a fixed point F on the curve when ¢ = 2 seconds. 

We now choose another point M on the curve, and draw the 

line segment or chord [FM] between the two points. To start 

with, let M be the point when ¢ = 4 seconds. 

  

A D (metres) 

  

  

  

  

  

  

  

  

  

          

80 The average speed of the ball bearing over the time 

interval 2 <t <4 

60 _ distance travelled 

e o time taken 

40 _ (80—20)m 
4—2)s 

20 60( —)1 =5 ms 
. (sec9nds>) — 30 ms—?       
    

  

6 

In this Investigation we will try to measure the instantaneous speed of the ball bearing when 

t = 2 seconds.
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What to do: 

If A and B are two points on a function, the gradient of the 

chord [AB] is the average rate of change between these points. 

From the Investigation, if we let B get closer and closer to A, 

then the average rate of change from A to B will approach the 

instantaneous rate of change at A. 

Click on the icon to start the demonstration. DEMO 

The gradient of the chord [FM] is shown. This is the average speed of the ball 

bearing in the interval from F to M. For M at t = 4 seconds, you should see 

that the average speed is 30 ms~". 

Click on M and drag it slowly towards F. Copy and complete gradient of [FM] 

the table alongside, where M corresponds to the given value 
4 30 of . 
3 

Observe what happens as M reaches F. Explain why this is so. 25 

What do you suspect is the instantaneous speed of the ball 2.1 

bearing when ¢ = 2 seconds? Explain your answer. 2.01 

gradient of [FM] 

0 

  

Move M to the origin, and then slide it towards F from the left. 

Copy and complete the table, where M again corresponds to the 

given value of ¢. 

Do your results agree with those in 4? 

  

     A 
tangent 

However, as B gets closer to A, the chord [AB] approaches the line which fouches the DEMO 

curve at A. This line is called the tangent to the curve at A. 

In particular, as B approaches A, the gradient of [AB] approaches the gradient of the 

tangent at A. 

The instantaneous rate of change in f(z) at 
any point A on the curve is the gradient of the 
tangent at A. 

y=f(z)
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Example 1 LR AT 
  

Use the tangents drawn to find 

the instantaneous rate of change in 

y=f(z) at: 
a A b B 

  

  

  

  

  

  

  

  

                              

  

a The tangent at A has gradient 1. b The tangent at B has gradient —2. 

the instantaneous rate of change .. the instantaneous rate of change 

at Ais 1. at B is —2. 

  

  

EXERCISE 11B 
  

  

  

  

  

  

  

  

  

  

                          
  

    
  

  

  

  

  

  

  

  

  

                                

1 This graph shows the distance travelled by a swimmer A distance (metres) 

in a pool. 100 

Use the tangents drawn to find the swimmer’s <0 

instantaneous speed after: 

a 30 seconds b 90 seconds. 60 

40 

20 

t o me (sqcoqul 

0 20 40 60 80 100 

1. . 
2 Yy The graph of f(x) = 5 i shown alongside. 

Use the tangents drawn to find the instantaneous 

rate of change in f(z) at: 

f(ir),zqfl a r=-1 b z=2. 

- = 
3 x 

PRINTABLE 
3 a Draw an accurate graph of y = 22 on a fine grid. GRAPH 

b Draw, as accurately as possible, the tangent to 3 = 2% at x = —1. 

¢ Hence find the instantaneous rate of change in y = x> when x = —1. 
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T uwins 
Drawing a tangent on a graph and measuring its gradient can be time-consuming and inaccurate. We 

therefore seek a more efficient and accurate method for finding the gradient of a tangent. 

  

We cannot find the gradient of the tangent at point A 

by direct calculation, because we only know one point 

on the tangent. However, if B is another point on the 

function y = f(x), the gradient of the chord [AB] is 

fla+h) — f(a) 
h 

To calculate the gradient of the tangent at A, we let the 

point B get closer and closer to A. This means that the 

horizontal step h becomes infinitely small. 

To understand what happens when this occurs, we use a 

mathematical principle called limits. 

  

The following definition of a limit is informal but adequate for the purposes of this course: 

If f(x) is as close as we like to some real number A for all z sufficiently close to (but not equal to) a, 

then we say that f(z) has a limit of A as z approaches a, and we write lim f(z) = A. 
T—a 

In this case, f(z) is said to converge to A as x approaches a. 

Notice that the limit is defined for x close to but not equal to a. Whether the function f is defined or 

not at x = a is not important to the definition of the limit of f as x approaches a. What is important 

is the behaviour of the function as x gets very close to a. 

5z + 2 

x 
For example, suppose we wish to find the limit of f(z) = as x — 0.   

It is tempting for us to simply substitute = =0 into f(z). However, in doing this, not only do we get 

the meaningless value of 2, but also we ignore the basic limit definition. 

2 
Instead, observe that if f(z) = Seta” _ 26+ 

x x 

54 if z#0 

is undefined if = = 0. 

    

then f(z)= { 

The graph of y = f(z) is therefore the straight line y = z+5 

with the point (0, 5) missing, called a point of discontinuity 

of the function. 

However, even though this point is missing, the /imit of f(z) 

as = approaches 0 does exist. In particular, as =z — 0 from 

either direction, f(z) — 5. 

  

  

  

. . 5 2 . 
We write lim 2227 — 5 which reads: 

z—0 
2 

“the limit as x approaches 0, of sete , is 5. 
x 

In practice we do not need to graph functions each time to determine limits, and most can be found 

algebraically.
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T O R (T 
  

    

  

    

  

    
  

      

Evaluate: 
2 2 _ 

a lim 22 b lim Z a5 ¢ lim Z 9 
T—2 z—0 i z—3 =z —3 

a z? can be made as close as we like to 4 by making z sufficiently close to 2. 

lim 2% = 4. 
2 

2 2 _ 
b lim 23 ¢ lim 222 

z—0 ) z—3 x—3 

— lim Z(x + 3) — lim (z + 3)(z—3) 

z—0 z z—3 _z—3 

= lin}] (x+3) {since z#0} S lin% (x+3) {since z#3} 

=R {as £ —0, z+3— 3} =6 {as 2 —3, 2+3— 6} 

EXERCISE 11C.1 

1 Evaluate: 

a 111’% (z+4) b lim1 (5—2x) < ,lini Bz —1) 

d lim (522 — 3z +2) e Jlim h%(1—h) f lim (22 +5) 

2 Evaluate: 

a lim 5 b lim 7 ¢ lim ¢, c a constant 
z—0 h—2 z—0 

3 Evaluate: 
2 _ 2 _ 

a lim =% b limh +oh ¢ lim &=t 
z—1 x h—2 h z—0 ¢+ 1 

4 Explain why lin%) Z =1, even though % is meaningless. 
r— x 

5 a Copy and complete the tables of values 

  

  

  

      

  

alongside. 
2 _ 

b Hence predict the value of lim = 1 1.9 
z—2 T —2 . 

24 1.99 
¢ Prove your result by evaluating ;1_)1112 — 1.999 

directly. 1.9999 

1.99999 

6 Evaluate: 
2 2 2 _ 

a lim =37 b lim 2157 ¢ lim 222 
z—0 x z—0 x z—0 T 

2 2 _ 3 _ 
d lim 2 t6R e lim 4 f 1im M8 

h—0 h h—0 h h—0 

2 _ 2 _ 2 _ . 
g lim r-z h lim Z 2o ilim 22 6     

z—1 xz—1 z—2 T —2 z—3 z—3
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1 Do limits always exist? 

2 Consider the graph of f(z) = 

8
|
~
 

a What happens to the graph as « — 0 from the: 

i left ii right? 

b Does f(z)= L have a limit as o — 0? 
x 

THEORY OF KNOWLEDGE 

The Greek philosopher Zeno of Elea lived in what is now southern Italy, in the 5th century BC. He 

is most famous for his paradoxes, which were recorded in Aristotle’s work Physics. 

The arrow paradox 

“If everything when it occupies an equal space is at rest, and if that which is in locomotion is 

always occupying such a space at any moment, the flying arrow is therefore motionless.” 

This argument says that if we choose any particular instant in time, the arrow is motionless. Therefore, 

how does the arrow actually move? 

The dichotomy paradox 

“That which is in locomotion must arrive at the half-way stage before it arrives at the goal.” 

If an object is to move a fixed distance then it must travel half that distance. Before it can travel a 

half the distance, it must travel a half that distance. With this process continuing indefinitely, motion 

is impossible. 

Achilles and the tortoise 

“In a race, the quickest runner can never overtake the slowest, since the pursuer must first reach 

the point from which the pursued started, and so the slower must always hold a lead.” 

According to this principle, the athlete Achilles will never be able to catch the slow tortoise! 

1 A paradox is a logical argument that leads to a contradiction or a situation which defies 

logic or reason. Can a paradox be the truth? 

Are Zeno’s paradoxes really paradoxes? 

3 Are the three paradoxes essentially the same? 

We know from experience that things do move, and that Achilles would catch the tortoise. 

Does that mean that logic has failed? 

5 What do Zeno’s paradoxes have to do with limits?
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LIMITS AT INFINITY 

We can use the idea of limits to discuss the behaviour of functions for extreme values of . 

We write & — oo to mean “x tends to plus infinity” and 2 — —oo to mean “z tends to minus 

infinity”. 
. 1 1 

Notice that as « — oo, the value of = gets very small. In fact, we can make — as close to 0 as we 
x xT 

. . . . 1 1 
like by making x large enough. This means that lim — =0 even though — never actually reaches 0. 

T—00 T x 

. 1 . i i 
We observe this on the graph of y = = as the function tends Y As @ gets infinitely 

    

   

T large and positive, 
towards its asymptote y = 0. 

W ymp y=0 L approaches 0. 

A function has a limit as = — oo oras x — —oo if the function is either a constant, or if it 

approaches a constant value. In the latter case, we observe this as a horizontal asymptote. 

[ LR LR (T 

2—zx 
a Discuss the behaviour of f(z) = o 

T 

equations. 

near its asymptotes, and hence deduce their 

b If they exist, state the values of lim f(z) and lm f(z). 
T— —00 £—00 

  

a As z——-17, f(z)—> -0 

As z— —-11, f(z) > o 

As ©— —o0, f(z)— -1" 

As T — o0, f(z) > —1" 

The vertical asymptote is = = —1. 

The horizontal asymptote is y = —1. 

b lim f(z)=-1 and lim f(z)=-1. 
Tr— —00 Tr— 00 

  

  

[ LR (R TS 

Find, if possible: a lim ( b lim (3—e%). 
£—00 

  

As x — —o00, 3—e ¥ — —o0. 

Since 3 — e~ * does not approach a finite 

value, lim (3—e~%) does not exist. 
T——00 

As x —o00, 3—e ¥ —> 37 

lim (3—e7%)=3 
£—00    
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EXERCISE 11€.2 

1 For each of the following functions: 

i Discuss the behaviour near its asymptotes, and hence deduce their equations. 

i If they exist, state the values of lim f(x) and lim f(z). 
Tr— 00 

      

——00 

L 3z —2 1-922 . 

a f(l)fz b f(ifl)*x+3 < f(x)73x+2 d f(x)717$ 

2 a Sketch the graph of 3 = ¢* — 6. 

b Hence discuss the value and geometric interpretation of: 

z——00 T—00 

3 Find, if possible: 

a lim (2¢e7% —3) 
z——00 

4 a Copy and complete this table of values: 

  

b Hence predict the value of lim xe™". 
T—00 

¢ Graph y =ze™* using technology. Does your graph support your prediction in b? 

  INVESTIGATION 2 

The sequence 0.3, 0.33, 0.333, .... can be defined by the general term x,, = 0.333....3 where 

there are n 3s after the decimal point, n € Z™. 

What to do: 

1 Copy and complete the table alongside: 

2 Consider x199 which contains 100 3s. In the number 

(1—32100), how many Os are there between the decimal 

point and the 1? 

3 In the limit as n tends to infinity, z, contains an 

increasingly large number of 3s. In the number 

(1—3x,), how many 0s are there between the decimal 
point and the 1? 

  

4 Using your answer to 3, state lim (1 — 3x,,). 
n—oQ 

5 Hence state lim x,,, which is the exact value of 0.3. 
n—oo
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[0 [T THE GRADIENT OF A TANGENT 
We have seen that for two points A(a, f(a)) and B(a+h, f(a+h)) on a function, the gradient of 

the chord [AB] is M . 

Letting B get infinitely close to A is equivalent to taking the limit as h — 0. 

The gradient of the tangent to the curve y = f(z) 

at the point where = =a is 

o F@th) — (@) 
h—0 h 

  

Example [ l1>)) Self Tutor 

Find the gradient of the tangent to f(z) = 2% at the point (2, 4). 
  

Let F be the point (2, 4). Suppose M has z-coordinate 2+ h and also lies on the graph, so 

Mis (2+h, (2+h)?). 

The gradient of the tangent at F 

_ o LR S 

   

  

      
  

fz)=a? = h 
2 _ 

= lim 2+h)7—4 

M + b, (24 h)?) ok 
’ g At R4 

- h—0 h 

— i 2R 
h—0 

= }lirrb (4+h) {as h # 0} 
s 

=4 

You can use technology to find the gradient of the tangent to CRAp IS 

a function at a given point, and hence check your answers. ) 

GRAPHICS 
CALCULATOR 
INSTRUCTIONS
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EXERCISE 11D 

1 F(3,9) lies on the graph of f(z) =22 M also lies on the graph, and has x-coordinate 3 + h. 

a State the y-coordinate of M. 

b Show that the gradient of the line segment [FM] is 6 + h. 

¢ Hence find the gradient of [FM] if M has coordinates: 

i (4,16) il (3.5, 12.25) 
il (3.1, 9.61) iv (3.01, 9.0601) 

d Use limits to find the gradient of the tangent to f(z) = 2% at the point (3, 9). 

2 2 a Find the gradient of the tangent to f(x) = 2 at the point where: 

i z=1 i z=4 

  

b Use a and other results from 

this Section to complete the table 

alongside for f(x) = 22 

x-coordinate | Gradient of tangent to f(z) = z* 

  

2 ¢ Predict the gradient of the tangent to f(z) = 2 at the point where z = a. 

3 Find the gradient of the tangent to: 

a f(x) =2?+x atthe point (2, 6) b f(z) =23 at the point where z =1 

¢ f(x)=— atthe point where x =2 d f(x) =2* atthe point where z = 1. 

HISTORICAL NOTE 

The word “calculus” is a Latin word referring to the small 

pebbles the ancient Romans used for counting. 

  

The first known description of calculus is found on the 

Egyptian Moscow papyrus from about 1850 BC. Here, 

it was used to calculate areas and volumes. 

Ancient Greek mathematicians such as Democritus and 

Eudoxus developed these ideas further by dividing - 

objects into an infinite number of sections. This led to e , m.l:u:gm '-\,:dm flm 

the study of infinitesimals, and allowed Archimedes of 

Syracuse to find the tangent to a curve other than a circle. 

The methods of Archimedes were the foundation for 

modern calculus developed almost 2000 years later by 

mathematicians such as Johann Bernoulli and Isaac 

Barrow. 

  
Egyptian Moscow papyrus
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[T THE DERIVATIVE FUNCTION 
For a non-linear function y = f(z), the gradient of the tangent 

changes as we move along the curve. 

We can therefore write a gradient function which gives the 

gradient of the tangent for any given value of z. 

  

The gradient function of y = f(z) is called its derivative function and is labelled f’(z). 

    
    

For example, in question 2 of the previous Exercise, you should have observed 

that for f(x) =22 the gradient of the tangent is always double the 

z-coordinate. 

So, for f(z) = 2% we write f'(z) = 2z. 

   
f'(z) is read 

“eff dashed of x”. 

Since f’(3) = 6, the gradient of the tangent to f(z) = 2 at the point 
where x =3, is 6. 

  

Example 6 «) Self Tutor 

For the given graph, find f’(4). 

  

The graph shows the tangent to the curve y = f(z) at the point where z = 4. 

The tangent passes through (2, 0) and (6, 4). 

f'(4) = gradient of the tangent 

_4-0 
T 6-2 

=S   
  

If we are given y written as a function of x, we often write the derivative function as d_y This is called 
T 

“the derivative of y with respect to 27, and is read “dee y by dee 2. 

dy For example, for y = 2% we have - =2z 
T



INTRODUCTION TO DIFFERENTIAL CALCULUS (Chapter 11) 277 
  

EXERCISE 11E 

1 Using the graph below, find: 2 Use the graph below to find f/(2). 

a f(0) b f(0) 

  

  

3 For the graph of y = f(x) alongside, decide whether the 

following are positive or negative: 

a f@) b f(1) 
¢ f(=4) d f(-2) 

  

  

  

  

  

  

  

  

  

  

                      v 
  

For the graph of y = f(x) alongside, the derivative 

function is f’(z) = 2z + 1. 

a Find and interpret: i f(-2) i f'(0) 

b Copy the graph, and include the information in a. 
     

  

y=f(z) 

5 Consider the graph of y = 2. 

Which of the functions below could be the derivative function fi? 
. dx 

Explain your answer. 

A B B Y _ 4 C @=3z2 
dx dx dx 

dy dy 2 D 2= E 2= -2 
dx 3 dx B(z ) 

  

INVESTIGATION 3 

The software, accessible using the icon alongside, can be used to find the gradient JaR IR 

of the tangent to a function f(z) at any point. By sliding the point along the graph, 

we observe the changing gradient of the tangent and hence generate the gradient 

function f/(z). 

What to do: 

1 Consider the functions f(z) =0, f(z)=2, and f(z)=4. 

a For each of these functions, what is the gradient? 

  

b Is the gradient constant for all values of 2?
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2 Consider the function f(z) = mz+ c. 

a State the gradient of the function. 

b s the gradient constant for all values of z? 

¢ Use the software to graph the following functions and observe the gradient function f/(x). 

Hence verify your answer to b. 

i flx)=2-1 il f(z)=3x+2 i f(z)=-22x+1 

3 a Observe the function f(z) = x? using the software. What #ype of function is the gradient 

function f'(x)? 

b Observe the following quadratic functions using the software: 

i fz)=22+z-2 i f(z) =22%-3 

il f(z)=-22+22-1 iv f(z)=-322-32+6 

¢ What fype of function are each of the gradient functions f/(z) in b? 

4 a Observe the function f(z) =e* using the software. 

b What is the gradient function f/(x)? 

I AT rhow s P 
To find the derivative function f’(x) for a function f(z), we use limit theory to find the gradient of the 

tangent to the curve at a general point (z, f(z)). 

Let A(z, f(z)) and B(z+h, f(xz +h)) be two points on the curve. 

     
g — J@+h) — f@) F B B : The chord [AB] has gradient = P 

_ fath) -~ f@) 
h 

If we let B approach A, then the gradient of [AB] 

approaches the gradient of the tangent at A. 

So, the gradient of the tangent at the general point (z, f(z)) is Am}] w . 

Since there is at most one value of the gradient for each value of z, the formula is actually a function. 

The derivative function or simply derivative of y = f(x) is defined as 

Fie) or B = iy 1EHN @ 
dz h—0 h 

The domain of f/(x) is the set of values for which this limit exists. 

When we evaluate this limit to find a derivative function, we say we are differentiating from first 

principles.



  

2 Use first principles to find the gradient function f’(z) of f(x) = 2. 

2 — lim 2+ 2ha + h2 — 22 
h—0 h 

. }f(2m+h) = lim A2 7 
hl—*n}) ,]{ 

e }linb 2z +h) {as h#0} 

EY; 

  

  
THE DERIVATIVE WHEN z = a 

The derivative at the point where 2 = a, denoted f’(a), can be found using f’(a) = Ain}] w . 

We did this in Section D on page 274. 

Alternatively, we can find the derivative function f’(z), and then substitute = =a to find f’(a). 

Example 8 

Given f(z)=a*, find f’(x). 

Find f’(—1), and interpret your answer. 

      

      F(z) = lim {EFH =@ 
h—0 h 

      

4 _ 4 — i &R =" 
h—0 h 

3 25,2 34 pd_ 
= lim w {binomial expansion} 

L —> 

. H(4x3 + 622h + 4zh? + h3) 
=lm - 

h—0 K 

= Jim (42® + 622h + 4zh? + h?) {since h # 0} 

= 43 

f'(=1) =4(-1° 
=4 

\ . fla)=at 
The tangent to f(x) = 2* at the point 

where x = —1, has gradient —4. / 

gradient = —4    
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EXERCISE 11F 

1 Find, from first principles, the gradient function of f(z) where f(z) is: 

az b1 ¢ 8 

2 Find f’(z) from first principles, given that f(z) is: 

a 2x+5 b 22 -32 ¢ —22+5r—3 

3 Find % from first principles given: 
T 

a y=4—=zx b y=222+2-1 ¢ y=a%—-222+3 

fla+h) 4 Use the first principles formula f’(a) = lim Tif(a) to find: 
h—0 

a f'(2) for f(z)=a* b f(3) for f(z)=at 

5 a Find f(z) given f@):% 

b Find f/(—1) and f/(3), and interpret your answers. 

  

6 The graph of f(z) = —2%+ 3z is shown alongside. 
  

a Use the graph to estimate the gradient of the tangent 
  to the curve at the point where: 

i z=0 i =2   

b Find f/(x) from first principles. le 
  

|y
 

  

¢ Find f/(0) and f’(2), and hence check your estimates 
in a. 

  

                    

  

    

7 a Given y=2°— 3z, find Z—y from first principles. 
T 

b Hence find the points on the graph at which the tangent has zero gradient. 

8 Consider the function f(z) =222 + 2z — 12. 

a Find f'(x). 

b Hence find the point where the tangent has gradient —2. 

¢ Draw the graph of f(z) = 222 + 22 — 12, and include the information from b. 

The graph of f(x) = —%2® + 2 is shown alongside. 

a Find f/(2). 

b Hence show that the illustrated tangents are 

perpendicular. 
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b Copy and complete: 

10 a Use the previous results to copy and complete the table alongside. 

] 
If f(z)=a", then f'(z)=...... 

  

  

1 Does a function always have a derivative function? 

2 Are the domains of a function and its derivative always the same? 

REVIEW SET 11A   
  

1 Find the average rate of change in f(z) from A to B. 
  

  

  

  

  

  

  

  

  

                          

2 Chantelle is riding in a ski-lift. Her height above the base of the mountain is shown on the 

graph below. 

A height (metres) 
  

500   

  

400   

  

  300 
  

200   

  

  

100 = 
tiqle seqonps) 

0 50 100 150 200 250 300 

                                    0 

a Is the ski-lift increasing in height at a constant rate? Explain your answer. 

b Find the rate at which the ski-lift is increasing in height. 

3 Evaluate: 

2h% —h . a?—16 
a lim (6z—7) b lim ¢ lim 

z—1 h—0 h z—4 x—4 
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2+zx 

z—4 
  4 a Sketch the graph of y = 

b Discuss the behaviour of the graph near its asymptotes, and hence deduce their equations. 

. 2 . 2 
¢ State the values of lim il and lim sl 

z——o00 T —4 z—oo x —4 
    

5 Consider f(z)= 222 

fl@+h a Show that +f(z) = 4z + 2k provided h #0. 

b Hence evaluate w for each value of A in f(3+h) — f(3) 

the table: 

  

¢ Evaluate lim 840 - /B) ] . Give a geometric interpretation of your result. 
h—0 

6 Use the graph alongside to find f/(3). 

  

7 Find, from first principles, the derivative of: 

a f(z)=2+22 b y=4-322 

8 a Given y=22>-1, find Z—y from first principles. 
I 

b Hence state the gradient of the tangent to y = 222 — 1 at the point where = = 4. 

¢ For what value of z is the gradient of the tangent to y = 222 — 1 equal to —12? 

9 The graph of f(x) = 2® — 32z% is shown alongside. 

a Find f/(x). 

b Hence show that the illustrated tangents are parallel. 
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REVIEW SET 11B 

1 Ay Use the tangent drawn to find the instantaneous rate 

3 of change in f(z) at = 2. 

  

  

  

  
  

  

  

  

                        

  

  

  

2 This graph shows the temperature in Berlin from A temperature (°C) 
6 am to 6 pm on a particular day. % 

Find the average rate of change in temperature 2 

  

  

  

  

  

  

  

      
from: 

a 7 am to noon 15 

b 3 to 5 pm. pm to 5 pm 0 

5                           time 

6am 9am 12pm 3pm  6Gpm 

3 Evaluate the limits: 

h3 — 3h . 322 -3z B 
a lim b lim —— ¢ lim 

h—0 h z—1 z—1 z—2 2—z 
  

4 a Sketch the graph of y = et=2_3 

b Hence find, if possible: 

  

  

  

  

  

  

  

i lim (e"2-3) il lim (e?72-—23). 
T——00 z—00 

5 y Decide whether the following are positive or negative: 

— ! . a f(-1) b f(0) 
< f(2) d f'(3) 

T\ 2 2 T 
  

  

                        

6 a Draw an accurate graph of f(x) =22 — 2. 

b Draw, as accurately as possible, the tangent to f(z) = 2% —2 at x = 2. 

Hence find the instantaneous rate of change in f(z) = 22 — 2 when z = 2. 

d Check your answer using f/(a) = ’llinb M}W .
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7 a Find f/(z) given f(z)=a*— 22 

b Find f/(—2) and interpret your answer. 

8 a Given y=2?+5x—2, find % from first principles. 
Xr 

b Hence find the point on the graph at which the tangent has gradient —3. 

9 In a BASE jumping competition from the Petronas 

Towers in Kuala Lumpur, the altitude of a 

professional jumper in the first 3 seconds is 

given by f(t) = 452 — 4.8¢> metres, where 
0 <t<3 seconds. 

a Find the height of the jumper after: 

i 1 second ii 2 seconds. 

  

b Find f/(t) from first principles. 

¢ Find the speed of the jumper after: 

i 1 second ii 2 seconds.



  

Rules of 

differentiation 

Contents: 

  

m
o
n
N
n
w
)
>
 

-
 

Simple rules of differentiation 

The chain rule 

The product rule 

The quotient rule 

Derivatives of exponential 
functions 

Derivatives of logarithmic 
functions 

Derivatives of trigonometric 

functions 

Second derivatives
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OPENING PROBLEM 

Consider the curve y = 22. 

In the previous Chapter we found that the gradient function 

. . d 
of this curve is =2 = 2z. 

dx 

  

Things to think about: 

a At which point on the graph of y = 22 is the tangent to the curve horizontal? How do we 
. .. . d; 

observe this from the derivative function d—y? 
T 

b Consider the transformation of y = x2 onto y = z%+ 3. 

i What transformation has taken place? 

ii For a given value of z, has the gradient of the tangent to the function changed? 

iii What is the gradient function of y = 22 + 3? DEMO 
2 2 ¢ Consider the transformation of y = z? onto y = (z — 2)%. 

i What transformation has taken place? 

ii How does the gradient function of y = (v —2)? relate to the gradient 

function of y = x2? 

iii Can you write down the gradient function of y = (z —2)?? 

d Consider the transformation of y = x> onto y = 222, 

i What transformation has taken place? 

ii How does the gradient function of y = 22% relate to the gradient function of y = 2%? 

If necessary, use the software to help you. 

In this Chapter we will discover rules which make it easier to find derivative functions. 

Differentiation is the process of finding a derivative or gradient function. 

  

Given a function f(x), we obtain f’(x) by differentiating with respect to the variable z. 

There are a number of rules associated with differentiation. These rules can be used to differentiate more 

complicated functions without having to use first principles. 

INVESTIGATION 1 

In Chapter 11 we used first principles to find the derivative of f(z) = 2™ for various values of n. 

In this Investigation we generalise this derivative for any n € N, then consider rules which allow 

us to differentiate functions which are the sum or difference of polynomial terms.
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What to do: 

1 Use the binomial expansion (z + )" = Y ()" "h" 
=0 

(B)z"+ (3)z™ th+ () a" 2RE + ...+ (2) B™ 

and the first principles formula f/(z) = %in}) w 

f(z) =2 for x € N. 

to find the derivative of 

2 a Differentiate using first principles: 

i 42? il 228 ili 72t 

b Copy and complete: “If f(z) = cz™, then f'(z)=...... ” 

3 a Use first principles to find f/(x) for: 

i f(z)=22+32 il f(z)=2%— 222 

b Copy and complete: “If f(z) = u(x)+ v(x), then f'(z)=...." 

The rules you found in the Investigation can actually be used much more widely than the cases you just 

considered. 

For example, the rule “if f(z) = 2" then f/(x) =mna™ 1" is true notjust for all n € N, but actually 

forall neR. 

We can summarise the following rules: 

  

¢ (a constant) 0 differentiating a constant 

" nz™ ! differentiating =" 

cu(x) cu/(z) constant times a function 

w(@) +v(z) | o(z)+0' () addition rule 
  

The last two rules can be proved using the first principles definition of f’(z). 

  

  

o If f(z)=cu(z), o If f(z)=u(z)+v(z), 

then f/(z) = cu/(z). then f/(z) =u/(z) + /() 

Proof: Proof: 

['(x) f'(z) 
i JE )~ @) g fEER) @) 

h—0 h h—0 h 

— lim cu(x + h) — cu(x) — lim (u(z +h) +v(z+h) — [u(z) + v(w)}) 

h—0 h h—0 h 

— lim ¢ [u(z + h) — u(z)] — lim (u(z + h) —u(z) +v(z+ h) — v(z)) 

h—0 h h—0 h 
— ¢ lim u(z + h) — u(x) — lim u(z + h) — u(x) L lim v(z + h) —v(z) 

h—0 h h—0 h h—0 

=cu/(z) =1/ (z) +0'(2)



Using the rules we have now developed, we can differentiate sums of powers of x. 

For example, if f(z)=32"+22® — 522+ 72 +6 then 

f(x) = 3(4a®) + 2(32?) — 5(22) + 7(1) + 0 

=122 4+ 622 — 102+ 7 

  

  

      
  

Example [ .1;)) Self Tutor 

Find f/(z) for f(z) equal to: 

52% + 622 — 3z + 2 w-243 
T x* 

3 9 4 3 
f(x) = 52° + 62% — 3z + 2 f(x):7$*;+x—3 

a ! _ e O . @) = 5(32 )+ 6(2z) — 3(1) — 7w 4o 4 300 

=152% + 12z — 3 . @) =7(1) —4(=1272) + 3(=3z™%) 

=7+4272 -9z 

4 9 

=TtaE A 

T R 
Find the gradient function for: 

_ 2 =22 J@) =3va+2 o) =" - 

_ 2 224 fla)=3vE +2 o) =" - = 
1 1 

=322 42271 =22 4272 

2 - 
fl(@)=3(32"2) +2(-1272) g (z) =2x—4(—3a2" ?) 

1 3 

=32 22277 =22 +2x 2 

32 Cops 2 
T2V a? - /T 

EXERCISE 12A 

Find f/(x) given that f(z) is: 

z3 z8 2 6z 

223 Tz? 3z° 529 

5z —2 z? -3 2+ 22 +3x -5 

222+ —1 322 —Tor +8 4 — 222 %z‘l 622 

2% — 42 4 62 22+ —1 7—x— 42 éz3—1z2—2
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2 Differentiate with respect to x: 

  

  

  

  

  

    

  

  

  

1 1 3 
a3 b = Z Remember that 

4 7 3 
d = e - 21+z—2 

2_ 6 _2 2.9 

1 2 8 4 1 

P 32—+ Ko-mts 57 
3 _ m 4I7l x° +4 ° 2z —5 

4z T z2 

3 Find the gradient function for f(z) where f(x) is: 

3 L 3 _ 1 a z b Yx 7 d 23— 52 

1 1 
e ?Jrfi\/;? f 22—z g a7z h —= 

i o2 3 Vz—4 45 7 -z’ 
i 2z 7 ~ k 7 1 7 

o 4 3 22—z +2 
m 32—z n 2 o 2z — P 7 

4 Find dy for: 
dx 

Y 2 _g2_ 8 —6 T+ 2 a y=nx b y=3z = ¢ y=06yx - 

d y=dnz® e y=252% 1422 - 1.3 f y=10z+1) 

g y=(z+1)(z—-2) h y=Q2z+1)(3z-2) i y=(-12)2 

2 
2 — 1) K y=a(z+1)(2z - | oy=@=9 I (22-1) y=a(z+1)(22 = 5) y="— 

5 Find: 

W 141 dy —7_5 a o for y=3t* — 5t b o for y=7 NG 

dr 2 dP 5 Lofor T=i— 2 YL ofor P=2_1 ¢ o for t— 5 d o for - Our/u 

  

    
LR R T 
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6 Find the gradient of the tangent to: 

  

a y=2%at =2 b y=2%—52+2 atthe point (3, 14) 

< y:% at the point (9, %) d y=22—32+7 at 2 =—1 
& 

e y=3y/x atthe point (1, 3) f y:QT,fE at the point (2, &) 
x 

z?—4 . 3 3 — 4z — 8 g y=—>— atthe point (4, Z) h y=—— at x=—1 
€T 

7 Find constants b and ¢ such that: 

a f)=2+ 0+ 1Dz+2c f(2)=4, and f/(-1)=2 

b f(z)=bz+§, f(3)=5, and f'(1)=5. 

  

  

If y=32?—4a, find Z—y and interpret its meaning. 
T 

  

As y =32% — 4z, L 
dx 

by 
dx 

the gradient of the tangent at any point on the curve can be found. It 

is also the instantaneous rate of change of y with respect to z. 

is the gradient function or derivative of y = 322 —4z from which 

  

8 If y=4o— 2, find Z—y and interpret its meaning. 
T L 

. . 4 
9 Consider the function f(z) =/ — 7 

a State the domain of f(x). b Find the derivative function f’(z). 

¢ State the domain of f’(z). d Find f/(1) and interpret your answer. 

10 The position of a car moving along a straight road is given by S = 2t> + 4¢ metres where t is 

the time in seconds. 

a Find % and interpret its meaning. 

b Find the value of % when ¢ =3, and interpret your answer. 

11 The cost of producing x toasters each week is given by C' = 1785 + 3z + 0.0022> pounds. Find 

the value of Z—C when x = 1000, and interpret its meaning. 
X 

ACTIVITY 

For a function y expressed in terms of z, the increments formula can be used to estimate the change 

in y for a given change in x. 

The increments formula states that the change in y, dy, can be estimated by 

oy~ % x Ox, where 6z is the change in x. 
T
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5 and therefore W _ g, For example, suppose y = & = 
T 

To estimate the value of 2.01°, welet =2 and éx = 0.01. 

Now 6yz%><5z 
X 

~ bt x o 

~5x 28 x 0.01 
~ 0.8 

Since 2° = 32, we estimate that 2.01° ~ 32+ 0.8 ~ 32.8. 

What to do: 

1 Use the increments formula to estimate the value of: 

a 5.012 b 2016 c 298 d 1.95% 

Use your calculator to check your estimates. 

2 a Use the diagram to explain what is actually 

calculated when we use the increments 

formula to estimate y. 

b Explain why the formula only provides 

accurate estimates for small values of 6z. 

  

DN THG CHAIN RULE 
In Chapter 3 we saw that the composite of two functions g and f is (go f)(xz) or g(f(x)). 

We can often write complicated functions as the composite of two or more simpler functions. 

For example y = (2% + 3z)* could be rewritten as y = u* where u =22+ 3z, oras y= g(f(2)) 

where g(z) =2* and f(x) =224 3. 

  

Example 5 R TR 

Find: 

a g(f(x) if g(x) == and f(z)=2-3 

b g(z) and f(x) suchthat g(f(x)) = ! 
z— a2’ 

There are several 

possible answers for b. 

  

a g(f(z))=g(2-3z) b Ifwelet f(z) =2 —2% then 

SvEea 9(f (@) =    
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EXERCISE 12B.1 

1 Find g(f(x)) if: 

a g(x)=2% and f(x)=22+7 b g(z)=22+7 and f(z) =2 

¢ g(z)=+x and f(z)=3—4dz d g(z) =3—4z and f(z) =z 

e g(x):% and f(z)=22+3 f g(z)=22+3 and f(gc):% 

2 Find g(x) and f(x) such that g(f(x)) is: 

  

3 —9p)5 a (3z+10) b (7-2x) T 

- 1 10 
d Va? -3z e Geo Dt f (3z — 22)3 

DERIVATIVES OF COMPOSITE FUNCTIONS 

The reason we are interested in writing complicated functions as composite functions is to make finding 

derivatives easier. 

INVESTIGATION 2 

In this Investigation we want to learn how to differentiate composite functions. 

    

Based on the rule “if y = 2™ then Z—y = na" "1, we might suspect that if y = (2 + 1)? then 
X 

O 2(2z + 1)'. But is this so? 
dz 

What to do: 

1 Expand y = (22 + 1)?, and hence find Z—y How does this compare with 2(2x + 1)'? 
T 

2 Expand y = (3z + 1)2, and hence find Z—y How does this compare with 2(3z + 1)%? 
T 

3 Expand y = (ax+1)> where a is a constant, and hence find Z—y How does this compare 
T 

with 2(az + 1)*? 

& Suppose y = u’. 

a Find fl 
du 

b Now suppose u=az+1, so y= (azx+ 1) 

i Find d—u il Write dy from a in terms of x. 
dz du 

dy _ du n . 
iii Hence find e X o iv  Compare your answer to the result in 3. 

U T 

2 dy ¢ If y=wu* where u is a function of z, what do you suspect = will be equal to? 
T 

5 Expand y = (22 + 3z)? and hence find dy 
dz 

Does your answer agree with the rule you suggested in & ¢?
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6 Consider y = (22 +1)3. 

& a Expand the brackets and hence find I 
X 

b Ifwelet u=2x+1, then y=u’. 

dy i Find fl ii Find —, and write it in terms of z. 
dx du 

iii Hence find % X % iv. Compare your answer to the result in a. 
U X 

7 Copy and complete: “If y is a function of u, and w is a function of x, then Z—y - ” 
T 

THE CHAIN RULE 

d dy d 
If y=g(u) where u = f(z) then v v 

dr  du dz 

This rule is extremely important and allows us to differentiate complicated functions much faster. 

For example, for any function f(z): 

Iy =@ then 2 = nif @)1 x £'(2). 

  

  

  

  

Example 6 R TR (TS 

Find 2 if: 
dx 

— (22 _ 974 __ 4 a y=(z*—22) by - 

a y = (22 — 22)* 

y=u' where u=z>—2 

dy _ dy du . 
Now it {chain rule} @ 

— 4u3(2z — 2 The brackets around iz & =4(a* — 22)°(2z — 2) 

4 
b = 

y v1—2z 
1 

=4u ® where u=1-2z 

dy _ dy du . 
Now bt {chain rule} 

3 

=4x(—3u %) x(-2) 
3 3 

=4u 2 =4(1-22) 2    
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EXERCISE 12B.2 

1 Write in the form au”, clearly stating what w is: 

    

1 2 
a — b Va2 -3z € — 

(2z - 1)? V2 —x? 

33 3 4 10 
d Va3 —x e G f - 

2 Differentiate y = (22 + 3)? by: 

a using the chain rule with « = 2z + 3 

b expanding y = (22 +3)? then differentiating term-by-term. 

dy 

  

  

  

3 Find the derivative function o for: 
I 

a y=(4x—5)? b y:512 ¢ y=+3x—2a? 
— 4T 

d y=(1-32)* e y=6(5—21)3 f y= 22322 

6 ) 2\3 
— h — (r2 _ 5 — 2( 2 _ _) gy Go 12 y = (2? — bx +8) iy @t == 

4 Find the gradient of the tangent to: 

a y=v1-22 at =1 b y=03z+2)% at z=-1 

y:% at x=1 d y=6xY1—2z at =0 GRAPHING 
(2 —1) PACKAGE 

¢ y= —= at x =14 f —<z+l>3 at v =1 
vy= T+ 2T - v= T - 

Check your answers using technology. 

5 The gradient function of f(z) = (2z —b)* is f/(x) = 242 — 242 +6. 

Find the constants a and b. 

6 Suppose y = \/1le_1;9¢ where a and b are constants. When z =3, y =1 and % = —%4 

Find a and b. 
3 

7 Suppose f(z)= B(ax - g) . Given that f(2)=3 and f/(2) =30, find a and b. 

1 

8 If y=2a% then x=y%. 

. dy dz dy  dx 
a Find = and W and hence show that o X W 1. 

b Explain why % X Z—z =1 whenever these derivatives exist for any general function y = f(z). 

[N THG PRODUCT RULE 
We have seen the addition rule which allows us to differentiate term-by-term: 

If f(z)=u(z)+v(x) then f'(z)=u'(z)+ v (). 

If we now consider the case f(2) = u(x)v(x), we might wonder if f'(z) =/ (z)v'(z). 

In other words, does the derivative of a product of two functions equal the product of their derivatives?
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INVESTIGATION 3 

Suppose u(x) and v(z) are two functions of z, and that f(z) = u(x)v(z) is the product of these 

functions. In this Investigation we attempt to find a rule for determining f’(z). 

What to do: 

1 Suppose u(z)=x and v(x) ==z, so f(x) =z 

a Find f/(z) by direct differentiation. b Find «/(z) and v/(z). 

¢ Does f'(z)=1u/(z)v'(x)? 

  

2 Suppose u(z) =z and v(z) =+/z, so f(z)=uxx=2x2. 

a Find f/(z) by direct differentiation. b Find «/() and v/(z). 

¢ Does f'(z) =u/(z)v'(z)? 

3 Copy and complete the following table, finding f/(z) by direct differentiation. 

) 

  

(x+1) T z+1 

(x—1)(2 2% r—1|2-22 
  

THE PRODUCT RULE 

If f(z) = u(z)v(z) then f'(z) = v/ (z) v(z) + u(z) V' (). 

Alternatively, if y = wv where u and v are functions of x, then 

dy du dv 
— =vv+uv=—v+u 
dz dz dz’ 

Example 7 o) Self Tutor 

  

   

  

      

  

    

  

If y=a%?—2x)%, find dy 
dx     

y = a%(x? — 2z)* is the product of 
Used together, the product rule and 

  

u=2> and v= (2 -21)* chain rule are extremely powerful. 
' =2z and v =4(z? —22)3(22 —2) {chain rule} 

Now Z—y =uv+uw'  {product rule} 
X 

= 22(2% — 22)* + 22 x 4(2® — 22)%(22 — 2) 

2x(z? — 22)* + 42%(2? — 22)%(2¢ — 2)          
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Ao 

Find % given y = /z(2z + 1)3. 
T 

  

wl
= 

y =2z +1)% is the product of u =z 

  

        
u =3z and v =3(2x+1)>x2  {chain rule} 

=6(2z + 1)? 

Now % =v'v+uv  {product rule} 

=12 22z +1)% + 22 x 6(2z + 1)* 

=172 25+ 1) + 627 (2z +1)° 

EXERCISE 12C 

1 Use the product rule to differentiate: 

a f(x)=a(x—-1) b f(z)=2zx(x+1) ¢ f(z)=2*Vz+1 

d f(z)=(zx+3)(z—1) e f(z)=axva?-1 f f(z)=z(z+1)? 

. dy . 
2 Find o, using the product rule: 

X 

a y=2*2z-1) b y=4z(2z+1)3 c y=2>/3—-z 

d y=z(zx—3)? e y=>5z%(32? — 1)° fy=z(z—12?)>3 

3 Find the gradient of the tangent to: 

a y=a'(1-22)% at z=-1 b y=yz(2?—2+1)? at z=4 

¢ y=xy/1—2z at z=—4 d y=2°V5—-22 at z=1. 

4 Consider y = /z(3 — )% 

dy  (3—z)(3—5z) 
a Show that i VT 

b Find the z-coordinates of all points on y = /z(3 — z)? where the tangent is horizontal. 

¢ State the domain of d—y Discuss how it differs from the domain of the original function. 
X 

5 Suppose y = —2z%(x + 4). For what values of = does dy _ 10? 
dz 

6 Suppose y = (z+ 3)(z —2)%. For what values of z does W _ 7 
dx 

7 Find the value of z for which the tangent to f(z) = azy/1 —x, a# 0 has gradient: 

a0 b a. 

8 Find the values of a such that f(z) =2?V2%? +a and f/(-2) = -2
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DM e auomewTmue 
  

    Expressions like s , and ———— are quotients because they represent the division of 
2@—5 1—3z (z—z2)4 

one expression by another. 

Quotient functions have the form Q(z) = % 
vz 

Notice that u(z) = Q(z) v(z) 

Lo (z) = Q' (x) v(z) + Q(x) V() {product rule} : ( 
- (@) = Q) v () = Q'(z) v(x) 

L Q@)v(a) = v'(@) - 25 (@) 
() o) — L@@ —u@) v @) 

  

  

  

v(z) 
’ _ ’ 

Q'(z) = W when this exists. 

THE QUOTIENT RULE 

it Q@) = X2 en () = LB U — wla) V(2 
v(z) [v(2)] 

Alternatively, if y = L where u and v are functions of z, then 
v 

du dv 
dy vv—uv = % 

dz v?2 - v2 

Example 9 o) Self Tutor 

. dy . 143z 
Use the quotient rule to find o, gven y=— g 

1+3z . . . 2 
Y= is a quotient with v =1+32z and wv=2"+1 

. u' =3 and v =2z 

dy w'v — uv' 5 
Now - {quotient rule} 

~ 3(2%+1)— (1+32)2z 
- (22 +1)2 

_ 322 43— 2z — 62> 
- (z2 +1)2 

3 — 2z — 322 

(xZ L 1)2    
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Ao 
  

Cody _ V= Find oy given y= T 

_ VJz . . . 
y= 202 is a quotient with 

1 

u=2? and v =(1-2x)? 

w' =322 and v =2(1-22)" x(-2)  {chain rule} 

= —4(1 - 2z) 
/7 ! 

Now dy _ wv—u {quotient rule} If you only need the gradient of 

  

  

    
  

    

    

    

    

dx v? a tangent at a given point, you 
1 1 ) £ 5 " oo d 

_ %z 2(1—2x)2 — 2 x (—4(1 — 2z)) will not need to simplify Ey . 

(1-2z)4 In such cases, substitute the 

L -4 1 value for z into the derivative 
5z ? (1 —22)% + 422 (1 — 22) function immediately. 

- (1—2x)% 

1-2z 2/ o[+ ave(25)] 
- (1—2x)%3 

_ 1-2z+8 

T 2va(1 - 22)3 

_ 6z + 1 

T 2yE(1—2a)3 T 

EXERCISE 12D 
. dy . 

1 Use the quotient rule to find d_y if: 
T 

1+ 3z z2 
a = b = 

Y 2—x Yy 2r +1 

2 -3 
d y= Vo e y=— 

Y= 1w L — 

2 Find: 

d (z+ 1) d ( 3z ) d a — b = — (....) reads 
dz(S—z dz \z2 -1 dz( ) 

“the derivative of (....) 
¢ & ad d & & with respect to z”. 

de \ 2z —1 dx \ \/x —5 

  D) (o) 
3 Find the gradient of the tangent to: 

  a y= at =1 b 
1—-2z 

c y= \/5 = at v =14 d 
2+ 1 
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xr 

Vo—1 
  4 Suppose f(x)= Find f’(z) using the quotient rule. 

    

  

.. x—1 1 . .. 
Check your answer by writing f(z) = 7T + 7T and then differentiating. 

5 Consider the graph of y = Zot3 alongside. y 
z+1 z=-1 

a Find % ' 
dx 

b Hence show that the illustrated tangents are parallel. 

  

  

  

  

6 a If y— 2% showthat Y — 2+ 
- 1—z dr  Jz(l —x)? 

b For what values of z is %: i zero ii  undefined? 
XL 

2 d 222 4 22 — 12 
7 alfy=2 +6, show that %Y = 2 +2r 12 

2z +1 dz (2z 4+ 1)2 

. od . n 
b For what values of z is d—y: i zero ii  undefined? 

T 

2 2 _ 
8 a If y= 2 =3Fl Gowthat W T 4z -7 

© 42 dx (z+ 2)2 

b For what values of z is 3—y: i zero il undefined? 
T 

I3 [BERIVATIVES OF EXPONENTIAL FUNCTIONS 
We have seen previously that the simplest exponential functions have the form f(x) = b* where b is 

any positive constant, b # 1. 

The graphs of all members of the 

exponential family f(z) = b": 

e pass through the point (0, 1) 

e are asymptotic to the x-axis at 

one end 

e lie above the z-axis for all z. 
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  INVESTIGATION 4 

The purpose of this Investigation is to observe the nature of the derivatives of f(z) = b* for various 

values of b. 

What to do: 

1 Use the software provided to help fill 

in the table for y = 27: 

CALCULUS 
DEMO 

  

2 Repeat 1 for the following functions: 

a y=3°" b y=5" ¢ y=(0.5)" 

3 Use your observations from 1 and 2 to write a statement about the derivative of the general 

exponential y =b" for b >0, b# 1. 

From the Investigation you should have found that: 

If f(z)=0% then f'(z)= f'(0) x b®. 

Proof: If f(z)="0", 

p peth _ pr .. L 
then f'(z) = ;ILHT{] — {definition of the derivative} 

x(ph 

= lim FEOR 1) 
h—0 h 

  

flz) =b 
  

     

  

w f@) =t x £(0) gradient = /(0) 

Given this result, if we can find a value of b such that f/(0) =1, then we will have found a function 

which is its own derivative!
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INVESTIGATION 5 

Click on the icon to graph f(x) =b® and its derivative function y = f’(z). 

Experiment with different values of b until the graphs of f(x) =b® and y= f'(z) 

appear the same. 

Estimate the corresponding value of b to 3 decimal places. 

You should have discovered that f(z) = f'(z) = b when b=~ 2.718. 

To find this value of b more accurately we return to the algebraic approach: 

  

ho_ 
We have already shown that if f(z) =b" then f/(z)="0b" (}th b n 1). 

So, to find the value of b such that f/(x) = b", we require 

b1 
  lim 1 

h—0 

bh —1 1 

Now =1« b= (1+h)", so taking the limit on both sides gives   

b:%lil%(lJrh)“ 

. 1 . 
Letting h = —, we notice that h — 0 as n — oo. 

n 

n 

b= lim (1+1) if this Timit exists. 
n n—oo 

We have in fact already seen this limit previously in an 

Investigation on continuously compounding interest. 
Check this for 

yourself by 

We found that as n — oo, evaluating 

1\" (1 + l) 

(1+2) —2718281828459045235.... n 
" for very large 

and this irrational number is the natural exponential e. values of 7. 

We therefore conclude: If f(x)=e" then f'(z)=e". 

THE DERIVATIVE OF ¢/(®) 

The functions e~%, ¢2**3, and e~*" all have the form /(). 

Suppose y = e/ @ =¥ where u= f(x). 

dy dy du 
Now —=—>— {chain rule} 

dx du dz N - 
du Function Derivative 

=e = &% 

=@ % f(2) ef@) | ef@) x f!(x) 

€ 

  

7] 

  

DEMO



  

  

Find the gradient function for y equal to: 

DN 22e=* 

_ ot 4 =3z WY _ 5w 3z If y=2e*+e then d—726 + e °%(=3) 
X 

=2¢% — 3¢ 

2. —x dy -z, 2 If y=a%¢"" then d—:2xe +z%e %(-1) 
X 

= 2ze" — 227" 

2z 2 _ L2z 

If y=" then %ZL;(U 
] dx ) 

(2 —1) 
22 

EXERCISE 12E 

Find the gradient function for f(x) equal to: 

641 e + 3 8—21 

2¢ 2 1—2e7® 4e? —3e7" 

2 L 
e e® 10(1 + %) 

e2u+1 f,f el—2a? 

Find the derivative of: 

ze’ 23e® < 
x 

1.263'1 i 20338—0,5'1 

vz 

Example T} l1>)) Self Tutor 

Find the gradient function for y equal to: 

  — 67:1:(267:1: + 1) 

21 

{addition rule} 

{product rule} 

{quotient rule}   

wl
s 

et 4 e~ 

20(1 — e~2) 

870.02:1: 

T 

ex 

efl? +2 

e v +1 
  

o - 1 (e -1 L 
V2e T +1 

) 

y=( -1 y= (@ +1)7 
— 3 _ T = 
=u’ where u=e" -1 =u 2 where u=2e""+1 

dy dy du B d dy d = == chain rule &y _ 2y du i 9o du dz { ule} e {chain rule} 

d: 
= 3u? fi ,%u_% a1 

3 

=—1(2e7" +1)7F x 2¢7%(-1) 

i
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3 Find the gradient function for y equal to: 

a (2+4ev)t b er -1 c (e"+e ") 

4 Find the gradient of the tangent to: 

  

  

a y=(e"+2)* at x=0 b y=5—— at z= 
— € 

¢ y=+e**+10 at x=1In3 d yzz;f at x = 
€ 

5 The graph of f(z) =+/6 —e® is shown alongside. 

a State the domain of the function. 

b The point P has y-coordinate 2. Find exactly: 

i the coordinates of P 

i the gradient of the tangent at P. 

  

6 Given f(x)=e" +2 and f'(0)= -8, find k. 

7 a By substituting ¢™? for 2 in y = 2%, find 3—y 
T 

b Show that if y=0" where b>0, b#1, then Z—y = b* x Inb. 
Xr 

¢ Find dy for: i y=5" il y=8x10" 
dx 

8 The tangent to f(x) = 2%e~ at point P is horizontal. Find the possible coordinates of P. 

9 Suppose S(z) =3(e® —e™®) and C(z) = 3(e” +e7%). 

a Show that [C(z)]* — [S(x)]* = 1. b Show that % [S(z)] = C(x). 

¢ Find % [C(x)] in terms of S(z). 

23 find 2 (1(@)] in terms of C/(z). 

13 [ BERIVATIVES OF LOGARITHMIC FUNCTIONS 
INVESTIGATION 6 

What to do: 

  d If T(z)= 

  

1 Click on the icon to see the graph of y = Inz. Observe the gradient function CATCULOS 

being drawn as the point moves from left to right along the graph. 

2 Predict a formula for the gradient function of y = Inzx. 

3 Find the gradient of the tangent to y = Inz for = = 0.25, 0.5, 1, 2, 3, 4, and 5. 

Do your results confirm your prediction in 2?
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From the Investigation you should have observed: PROOF 

If y=Inz then @:l, x> 0. 
der =z 

THE DERIVATIVE OF In f(z) 

Suppose y = In f(x) 

. y=Inu where u= f(z). 

  

Now & _dudu {chain rule} 
dx du dx 

dy 1du Inz 

dr ~ udz 

_f@) 
f(x) 

  

Example 13 ) Self Tutor 

Find the gradient function of: 

a y=In(1-3z) 

  

  

  

  
  

a y=1In(1—3z) b y=zlnz 

dy _ 3 R S (l> {product rule} 
dx 1—-3z dz ) 

__3 =322 Inz + 2? 
3z —1 

=22(3lnz + 1) 
  

The laws of logarithms can help us to differentiate some logarithmic functions more easily. 

For a>0, b>0, neR: In(ab) =Ina+1Inb 

a 
111(—) =Ina—1Inb 

b 

In(a”) =nlna 

EXERCISE 12F 

1 Find the gradient function of: 

a y=In(Ta) b y=1In(2z+1) ¢ y=In(zr—2a?) 

d y=3-2Inz e y=2’lnx f y:ln_x 
2 

g y=e"lnz h y=(Inz)? i y=+vVz 

i y=e¢*lnzx Ik y=+/xn(2z) I y= 2vE 
Inz 

2 Inz 
m y=3—4In(l—=2) n y=zln(z?+1) o y=— 

2 Given f(z)=In(kx) where k#0, find f’(x). 

Use the laws of logarithms to explain why this derivative does not depend on the value of k.
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dx 

a y=uzlnb b y=In(z?) ¢ y=In(a*+2) 

d y=1In(10 - 52) e y=[n2z+1) ) 
T 

! 1 
S Z/=1H(—> h y=In(lnz) iy=— 

z Inz 

  

Differentiate with respect to x: 
2 

= In(ze™® =In|——— 
a y=lnfze™) by n{(x+2)(x73)} 

a y = In(ze™") 

— —T . =Inz+Ine {In(ab) =Ina + Inb} N rE— 

=hz-z {lne® = a} will only be valid on 
_1_4 at most the domain of 

dr = the original function. 

  

12 

2 y=1n|:(z+2)(z—3):| 

=Ina? — In[(z + 2)(z — 3)] {ln(%) =Ina—1Inb} @ 

=2Inz — [In(z +2) + In(z — 3)] 

  

  

    

  

G 

=2Inz—In(z +2) —In(z — 3) 

@g_2__1 __1 
dr =z x+2 x—3 

4 Use the laws of logarithms to help differentiate with respect to x: 

1 
a y=Iny1-2z b y—ln(2z+3) 

¢ y=In(e"/2) d y=In(zv2—1) 

_ z+3 _ z? 

¢ y_ln(z—l) ! y_ln<3—z> 

5 Differentiate with respect to x: 

a f(x)=In((3z —4)?%) b f(z) =ln(z(z?+1)) 

_ z2 + 2z o z3 
c f(z)—ln( — ) d f(z)—ln(m> 

Find the gradient of the tangent to y = xIna at the point where x = e. 

Suppose f(z) = aln(br?) where f(e) =3 and f/(1) =6. Find the constants a and b. 

©
 

©
 

N
 

o
 

Find the point(s) at which the tangent to y = In(15 — 2?) has gradient 1. 

Suppose f(z) = axln(bx) where f(1) =12 and f’(1) =16. Find the constants a and b. 
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1 WBHAATIVES OF TRIGONOMETRIC FUNCTIONS 
We have seen that the sine and cosine 

curves naturally arise from circular 

motion. 

Yy=coszT y=sinz 

  

  

  INVESTIGATION 7 

What to do: 

1 Click on the icon to observe the graph of y = sinx. A tangent with x-step DERIVATIVES 

of length 1 unit moves across the curve, and its y-step is translated onto the 

gradient graph. Predict the derivative of the function y = sinx. 

2 Repeat the process in 1 for the graph of y = cosxz. Hence predict the 

derivative of the function y = cosx. 

Suppose P and Q are points on the unit circle 

corresponding to angles 6 and 6 + Af respectively from 

the positive z-axis. 

  

a Explain why PR = sin(f + Af) — sin6. Q_ R 

b If P and Q are close together then A6 is very small. 

Explain why as Q approaches P: 

i the arc PQ resembles line segment [PQ] 

ii the length of the line segment PQ ~ A6 

iii QfiO approaches a right angle 

iv QPR ~ 0.   
O N 

¢ Use right angled triangle trigonometry in AQRP to show that cosf ~ M 
Af 

Hence explain why in the limit as A0 — 0, cosf = %(sin 0). 

From the Investigation you should have deduced that: 

For z in radians: If f(z)=sinx then f/(x)=cosz. 

If f(z)=cosz then f'(x)=—sinz.
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THE DERIVATIVES OF sin[f (z)] AND cos|[f(z)] 
Suppose  y = sin[f(z)] 

Ifwelet uw= f(x), then y=sinu. 

But % _ ddu {chain rule} 
dz du dz 

% =cosu x f'(z) 

= cos{f(x)] x f'(x) 
We can perform a similar procedure for cos|f(x)]. 

cos(f(z)] f'(x) 

—sin[f(2)] f'(2) 

Function 

sin[f ()] 
cos(f ()] 

  

  

Differentiate with respect to x: 

  

  

a zsinz b 4cos?3x 

a y=2xsinz b y = 4cos® 3z 

By _ (1)sinz + (z) cos = 4u® where u = cos3x 

dz dy  dy du hai 1 
{product rule} il = {chain rule} 

=sinz + zcosz 
fl = 8u X fl 

dx dx 

= 8cos 3z X (—3sin3x) 
= —24 cos 3z sin 3z 

= —12sin 6z 

  

EXERCISE 12G 

1 Find & for: 
dz 

a y=sin2zx 

d y=sin(z+1) 

g y=sing —3cosx h 

2 Differentiate with respect to x: 

b y=sinz +cosx 

e y=cos(3—2x) 

y =4sinx — cos 2z 

¢ y=cos3dzr —sinz 

f y=3—2cos3z 

i y= %cosfixf5sin4x 

  

  

a 2% +cosw b e®cosx ¢ e "sinx d In(sinz) 

e e85 f cosg g zcosx h 2 
x 

3 Differentiate with respect to x: 

a sin(z?) b cos(y/7) ¢ yJcosz d sin’z 
E . g 2 

e cosPw f cosxsin2x g cos®4x — 
sin“ 2z 

L a Use the quotient rule to find the derivative of tan x. 

d 
b Hence find £ for: 

dz 

i y=tanbx il y=tanz — 3sinz i y=etanw iv y=xtanz
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5 Find the gradient of the tangent to: 

a f(z) =sin®z at the point where = = %’“ 

b f(r) =coszsinz at the point where = = 7. 

6 Consider the function f(z) = 2cos®z + 2sin’z + 1. 

a Find f'(x). b Explain your answer to a. 

7 The graph of y = cosx + 2sin2zx is shown 

alongside. 

a Which tangent appears to have the steeper 

gradient? 

. d 
b Find d—y, and hence check your answer 

X 

to a.    y=cosx + 2sin 2z 

CEMUNNT SECOND DERIVATIVES 
Given a function f(z), the derivative f/(z) is known as the first derivative. 

    

The second derivative of f(x) is the derivative of f/(z), or the derivative of the first derivative. 

d? . 
We use f”(z), y”’, or d_x?; to represent the second derivative. 

f"(x) reads “f double dashed x”. 

2 
v _d (d—y) reads “dee two y by dee x squared”. 
dz? dr \dz ° 

f"(z) is the rate of change 
of f/(z) with respect to . 

  

  

Example 16 

   
      

Find f”(z) given: 

a flz)=22-2 b f(ac):Jccos.Jchl 
x X 

  

         
       

a flz) =2%—3z71 b f(z) =zcosa +a! 

f'(z) =32 + 3272 o () = (1) cosz + (z)(—sina) — 22 

f(x) = 62 — 6273 =cosx — xsinz — 72     
o f"(z) = —sinz — (1) sinz — (z) cosz + 2272 

          
A 2 

= —2sinz —zcoST + — 
xT 
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EXERCISE 12H 

10 

1 

12 

Find f”(x) given that: 

  

  

  

  

  

  

a f(z)=3z*—6z+2 b f(x):%—l ¢ flz)=223-322—2+5 
x 

_2—-3z _ o 9 oz +2 d f@) =2 e fla)=(1-2) P i) =22 
. d2y . i 

Find o3 given that: 

—r_a? —g2- 3 —o_ 3 a y=zx—=x b y=z = c y=2 7 

d y:4_ac e y= (22— 3x)? fy=a2—a+ ! 
x 11—z 

g y:e3x+2w h yzlfeiw i y:37f 

x zre 

Given f(z)=a%—2z+5, find: 

a f(2) b f(2) < f(2) 

Find the value(s) of @ such that f”(z) =0, given: 

a f(r) =2z 622 +5x+1 

Consider the function f(z) = 22% — z. 

Copy and complete the table alongside by indicating whether f(z), 

f'(z), and f(x) are positive (+), negative (—), or zero (0) at the 

given values of . 

1 

b f(z) =zt — 1023 + 3622 — T2z + 108 

  

Given f(z)=a?— = find: 

a f(1 b (1) < f'(1) 

Given f(z) = 3e* — 2z, find: 

a f(1) b f(1) < f(1) 
. d?y . i 

Find oz given that: 

. cos’z — o 
a y=uwzxsinz b Yy=—7 ¢ y=e "sinz 

Suppose y = Aek* where A and k are constants. Show that: 

dy _ Py _ o 
@ dz_ky ® dzz_ky 

Suppose f(z) = 2sin®z — 3sinz. 

a Show that f’(z) = —3coszcos2x. b Find f"(z). 

Given f(z)= 2sin3z, find f”(3). 

. d2y . i 
Find oz givem: 

a y=—Inz b y=zlnx ¢ y=(lnz)?
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2 

13 If y =2e%® 4 5¢**, show that %fYZ—erle:O. 
X 2 

2 

14 If y=sin(2z +3), show that j_g Ty =0. 
XL 

2 

15 If y=2sinz + 3cosz, show that Z—g+y=0. 
L 

REVIEW SET 12A 

1 Find f’(z) given that f(z) is: 

  

a 52° b 20— b5z ¢ 723 
x 

d 30— 2 e 21,7 t 47— L = v 

Find 2 for: 
dx 5 

a y=322—2* b y=2 ;z ¢ y=22/r—2 

z 

\/x2+1. 

b At what point on the curve f(z)= 

a Find f/(z) given f(z)= 

x 

Va2 +1 
does the tangent have gradient 1? 

  

Find 2 . 

a y=e't2 b y=1n(1;3> ¢ y=xe® 

Find the gradient of the tangent to: 

a f(z)=-22+4z—2 at (-3, —23) b y=(2-32)° at z=1. 

Differentiate with respect to x: 

a 5z—3z7! b (322 +x)* ¢ (z2+1)(1—23)3 

Find all points on the curve y = 2z° + 322 — 10z + 3 where the gradient of the tangent is 2. 

Differentiate with respect to x: 

a sinbxlnzx b sinzcos2z ¢ e “cosw 

Find the gradient of the tangent to y = sin®z at the point where z = o 

2 
Given y = 3e” — e~ ¥, show that & Y. 

dz? 

2 4y — 
Consider the function f(z) = & — 22 =1 

a Find f/(z). 

b Find the gradient of the tangent to y = f(z) at = = 1. 

¢ For what values of z is the tangent to y = f(z) horizontal? 

eT 

Find the derivative with respect to z of: 

    a f(@)=(a®+3)" b ga)= YEE7 ¢ h(r)=
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13 The graph of y =sinzcosx is shown 

alongside. y=sinz cosz 

a Find @ 
dx 
  

8Y
 

b Show that y = 3sin2x has the same 

derivative. 

¢ Find the gradient of the illustrated 

tangent. 

  

14 For f(z)=2sinz + cos2z, find: 

a f(3) b f(3) ¢ (%) 

15 Find — for: 

a y=1at4 L% — 122 b y=uze 

16 For the function f(z) = \/z cosda: 

a Find f'(z) and f"(z). 

b Hence find: i (&) i f7(%) 

17 Consider the curves y =e® 1 +1 and y =3 — el 2. 

a Sketch the curves on the same set of axes. 

b Find the point of intersection of the two curves. 

¢ Show that the tangents to each curve at this point have the same gradient. Comment on 

the significance of this result. 

REVIEW SET 12B 

1 Find f/(x) given that f(z) is: 

  

a 322 Tz+4 b (z+5)? ¢ 2z-2 d 6227 
x 

2 Find dy for: 

@ 3 5 15 — 9.3 _ G2 _ ) 4 a y=2z’>—62°+7x—4 b y i cy 7 

3 If f(x)=7+z—32% find: 

a f(3) b f'(3) ¢ f(3) 
4 Differentiate with respect to x: 

2 _ 
a y=a3v/1—a? b y=2 e 

5 a Find dy for y = xe®. 
dx 

b Find all points on the curve y = ze® where the gradient of the tangent is 2e. 

6 Differentiate with respect to x: 

a f(@)=n(e" +3) b f(z)= ln{(’”+2)3} 
x 

 



312 

7 

10 

12 

13 

14 

15 

16 

17 

RULES OF DIFFERENTIATION (Chapter 12) 

x2+2   

PRINTABLE 
GRAPH 

  The graph of f(z) = 

alongside. 

a Find f/(x). 

b Hence find the gradient of the 

tangent at: 

iz=1 i z=-2 

is shown 
  

  

  

  

  

  

  

  

  

  ¢ Copy the graph, and include the 

information from b. 
      

  

                          4 
Suppose y = (a: — l) . Find Z—y at the point where = = 1. 

xT T 

Find % i 
dx 

X 

a y=In(a®-32) b y:e—2 ¢ y=ec*sina 
T 

Suppose f(z) = 2% — 423 — 92% + 4z + 7. 

  

a Find f"(z). b Find z such that f”(z) =0. 

Differentiate with respect to x: 

a 10z — sin10z b 1n< ! ) ¢ sinbzln(2z) 
cos T 

3 

Find the gradient of the tangent to y = at T =2.   

z+1 

Suppose f(x) = aln(bz) where f(e) =12 and f’(2) =2. Find the constants a and b. 

cos 

sinz + 2 
  The graph of y = is shown Y 

alongside. 

a Find the gradient of the illustrated 
-+ tangent. o 2.7r z 
  

b Show that it is impossible to draw a 

tangent to the graph with gradient —%. y =52 
sinz 4 2 
  

_ i dy _ e¥(2x — 1) 
a If y—fi, show that T omvE 

. d f n 
b For what values of x is d—y: i zero ii undefined? 

Xr 

b y=z3—z+% 

2 
Suppose y = 3sin 2z + 2cos2x. Show that 4y + Z—y =0. 

2 

  

6z 

3422 

a flz)=-} b f(2)=0 ¢ f'@)=0 

  . Find the value(s) of x such that:



  

Properties of 

curves 
Contents: Tangents 

Normals 
Increasing and decreasing 

Stationary points 

Shape 

Inflection points 

Understanding functions and their 

derivatives 

O
M
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M
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  OPENING PROBLEM 

The curve y = x® — 4z is shown alongside. 

Things to think about: 

a What features of this curve could you describe to 

someone? 

b How can we use calculus to help identify important 

features? 

¢ How would you describe the shape of a curve? What 

rules would you use to identify a curve’s shape? 

In the previous Chapter we saw how to differentiate many types 

of functions. 
Minima is the plural of minimum. 

Maxima is the plural of maximum. 

In this Chapter we will use derivatives to find: 

  

e tangents and normals to curves 

e turning points, which are local minima and maxima 

e inflection points where the curve changes shape. 

NGENTS 
i   

The tangent to a curve at point A is the best approximating straight line to the curve at A. 

In cases we have seen already, the tangent touches the curve. 

For example, consider the tangents to the circle and parabola 

shown. 

However, we note that for some functions: 

o The tangent may intersect the curve again somewhere else. 

e [t is possible for the tangent to pass through the curve at 

the point of tangency. If this happens, we call it a point 

of inflection. N point of inflection 

Consider a curve y = f(z). 

If A is the point with x-coordinate a, then the gradient of the y=f(z) 

tangent to the curve at this point is f/(a). 
   

    

  

point of 

The equation of the tangent is contact 

y— fla) = f'(a)(z — a) 

or y=f'(a)(x — a) + f(a).
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Example 1 o) Self Tutor 

Find the equation of the tangent to f(x) = 2%+ 1 at the point where x = 1. 

Since f(1) =124 1 =2, the point of contactis (1, 2). 

Now f/(z) =2z, soat =1 the tangent has gradient 

fry=2. 

. the tangent has equation y = 2(x — 1)+ 2 

which is y = 2z. 

  

EXERCISE 13A 

1 The graph of f(x) = 22 — 4z is shown alongside. 

a Find f/(x). 

b Hence find the equation of the illustrated tangent. 

  

2 Find the equation of the tangent to: 

92 . o = a y=ax—222+3 at =2 b y=yr+1at =4 GRAPHING 

¢ y=a%—5r at v=1 d yz% at (1, 4) 
xr 

e yzifé at (—1, —4) fy:?;;rzfl at r=—1. 
x x xr 

Check your answers using technology. 

LR AR 

  

Since y=a% — 120 +2, =2 =322 12 

Horizontal tangents have gradient 0, 

so 322 -12=0 

3(z°—4)=0 

3x+2)(z—2)=0 

. x=-2o0r2 

When =2, y=8-24+2=-14 

When z=-2, y=-8+24+2=18 

the points of contact are (2, —14) and (-2, 18) 

the tangents are y = —14 and y = 18. 
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3 Find the equations of any horizontal tangents to: 

a y=2z%+32> 12z +1 b y=—2°+322+ 92— 4 ¢ y=\7+ 

Sl
 

4 The tangent to y = 22° + kz? — 3 at the point where = =2 has gradient 4. 

a Find k. b Hence find the equation of this tangent. 

5 Find another tangent to y = 1 — 3z + 1222 — 823 which is parallel to the tangent at (1, 2). 

6 Consider the curve y = 2%+ ax +b where a and b are constants. The tangent to this curve at the 

point where x =1 is 2x +y = 6. Find the values of a and b. 

7 Find the values of a and b. 

  

a Find f'(x). 

b Find the values of = at which the tangent to the curve is horizontal. 

¢ Show that the tangents at these points are the same line. 

10 Consider the curve y = av/1 — bz where a and b are constants. The tangent to this curve at the 

point where z = —1 is 3z +y = 5. Find the values of a and b. 

Example ) l1>)) Self Tutor 

Show that the equation of the tangent to y = Inx at the point where y = —1 is y =ex — 2. 

When y=-1, Inz=-1 

r=el=1 
€ 

the point of contact is (2, —1). 

Now f(z) =1Inz has derivative f’(z) = 

the tangent at (%, 71) has gradient — =e 

  

el
-l
m 

g
~
 

the tangent has equation y = e(z — l) -1 
€ 

whichis y=ex—2       

11 Find the equation of the tangent to: 

a f(z)=e * atthe point where = =2 b y=In(2—=z) atthe point where z = —1 

¢ y=(xz+2)e” atthe point where z =1 d y=In,/z atthe point where y = —1 

3z—5 e y=e at the point where y = e.
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12 Consider f(x) = In(z(x — 2)). 

a State the domain of f(z). b Find f/(x). 

¢ Find the equation of the tangent to y = f(z) at the point where x = 3. 

2 e’ at z=1. 13 Find the axes intercepts of the tangent to y =z 

14 Find the exact area of the shaded triangle. 

  

15 Find the equation of the tangent to: 

  

a y=sinx at the origin b y=cosx at the point where =% 

1 . 
c y= at the point where = = % 

Y sin 2z p 4 

d y=cos2x +3sinx at the point where x = Z. 

cosT 
16 Show that the curve with equation y = - 

1+sinz 
  does not have any horizontal tangents. 

Y o) Self Tutor 

      

   

  

   
Find where the tangent to y = 2° + 2 +2 at (1, 4) meets the curve again.     _ 3 
Let f(z) =2’ +z+2 (z — 1)% must be a factor 

f/(g;')=31'2+1 and . f/(1)=3+1=4 of 23 —3zx+2=0 

the equation of the tangent at (1, 4) is 4z —y = 4(1) — 4 Einciiclaceonsiderns 
or y=dr the tangent at x =1. 

The curve meets the tangent again when 2% + 2 + 2 = 4z 

ot —30+2=0 
(x-1)2%(z+2)=0 

When z=-2, y=(-2)°+(-2)+2=-8 P 

the tangent meets the curve again at (—2, —8). 

  

  
Casio fx-CG50 TI-84 Plus CE HP Prime 

. : T L 
Yl —,[;E}((:f)]j}l;w “"g‘“““ [T T {4 0 

= o 
Y2=4x 

INTSECT 

  

Intersection 
X="2 I tersection: (-2, -8)    
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Find where the tangent to the curve y = 2% at the point where @ = 2, meets the curve again. 

Find where the tangent to the curve y = —a% + 222 + 1 at the point where 2 = —1, meets the 

curve again. 

. 1 1 . . 
Find where the tangent to the curve y = — — — at the point where x =1, meets the curve again. 

x x 

Example [ l1>)) Self Tutor 

Find the equations of the tangents to y = 2% from the external point (2, 3). 
  

  
20 

22 

23 

24 

Let (a, a®) be a general point on f(x) = 22. 

Now f/(z) =2z, so f'(a)=2a 

the equation of the tangent at (a, a?) is 

y =2a(z —a) +a® whichis y=2az — a’ 

Thus the tangents which pass through (2, 3) satisfy 

  

3 =2a(2) — a* 

soat—4a+3=0 
oo (a=1)(a—3)=0 

a=1or3 

two tangents pass through the external point (2, 3). 

If a=1, the tangent has equation y =2z — 1 with point of contact (1, 1). 

If a =3, the tangent has equation y = 6z —9 with point of contact (3, 9).   
2 Find the equation of the tangent to y = 2° —x + 9 at the point where = = a. 

b Hence find the equations of the two tangents from (0, 0) to the curve. State the coordinates 

of the points of contact. 

a Find the equation of the tangent to y = 2% + 4z at the point where = = a. 

b Hence find the equations of the tangents to y = 22 +42 which pass through the external point 

(1, —4). State the coordinates of the points of contact. 

Find the equations of the tangents to y = 2> — 3z + 1 which pass through (1, —10). 

a Find the equation of the tangent to y = e” at the point where = = a. 

b Hence find the equation of the tangent to y = e® which passes through the origin. 

Consider the function y = 222 

a Find the equations of the tangents to the function from the external point (1, —6). 

b Find the points of contact for the tangents. 

¢ Show that no tangents to the function pass through the point (1, 4). 

d Draw a graph of y = 222 showing the information above.
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25 Consider f(z)= % 
&I 

Sketch the graph of the function. 

Find the equation of the tangent at the point where = = a. 

If the tangent in b cuts the x-axis at A and the y-axis at B, find the coordinates of A and B. 

Q 
a 

T 
o 

Find the area of triangle OAB and discuss the area of the triangle as a — oc. 

26 Find, correct to 2 decimal places, the angle between the tangents to y = 3e~™" and y =2+e" at 

their point of intersection. 

2 27 A quadratic of the form y = ax®, a >0, touches the logarithmic function y =Inx as shown. 

    

  

If two curves fouch then 

they share a common 

tangent at that point.        

If the @-coordinate of the point of contact is b, explain why ab? =1Inb and 2ab = % 

Deduce that the point of contact is (/€ $). 

Find the value of a. 

Q 
an
 
O
 o
 

Find the equation of the common tangent. 

28 Let p(z) =az? a#0. 

a Find the equations of the tangents to the curve at * =s and x =t¢. 

s+t 
  b Prove that the two tangent lines intersect at = = 

. . . . 1 
¢ Prove that if the tangent lines are perpendicular then they intersect at y = I 

a 

DEET Nommais 
A normal to a curve is a line which is perpendicular to the 

tangent at the point of contact. 

     . . . . . tangent 
The gradients of perpendicular lines are negative reciprocals of € 

each other, so: 
Ala, f(a)) 

1 

f'a)” 
  The gradient of the normal to the curve at * =a is — 

The equation of the normal to the curve at = =a is 

1 
@ (x — a) + f(a).   '.'J:_f,



  

€1, 10N )     
Find the equation of the normal to y = S at the point where z = 4. 

  

   

  

7 

When z =4, y:i:§:4. So, the point of contact is (4, 4). 
Vi o2 

-1 4y .| 
g Nowas y=8x 2, 5:7415 g 

!/:fi u i 

when z=4, L= 4x472=-1 
dx tangent 

the normal at (4, 4) has gradient 3. 

the equation of the normal is 

f—_— 2z — 1y = 2(4) — 1(4) 

or 2z—y=4 

  

EXERCISE 13B 

Find the equation of the normal to: 

    

y =22 at the point (4, 16) y=a>-br+2 at = -2 

:%7 @ at the point (1, 4) 1/:8\/57:%2 at =1 

2 
__Z 1. -1 — _ f) = 2 a (-1, ) fla) = 2 ar (2. 

Suppose f(z) = a2 — 8 
x 

Find the equation of the tangentto y = f(z) at = = —2. 

Find the equation of the normal to y = f(z) at x=3. 

Example 7 LR AT 

T—2 Find the equation of the normal to y = e at the point where = = 3. 
  

When x =3, y=e’"2=ec. So, the point of contact is (3, ¢). 

2 — pT—2 Now as y=e"" 7, 

tangent . when x =3, 

(3.¢) 
the normal at (3, e) has gradient L 

€ 

the equation of the normal is 

1 
y=—=(z—3)+e 

€ 

z+ey=3+e?    
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3 Find the equation of the normal to: 

a y=e® at =0 b y=Ilnz at z=¢ 

2z—1 c y=e at z =1 d y=sinz at z = %. 

4 Consider the curve y = a\/z + % where a and b are constants. The normal to this curve at the 

point where = =4 is 4z +y = 22. Find the values of a and b. 

Find the points where the normal to y = 2% — 222 +1 at z = 1, meets the curve again. 

6 Find the equation of the normal to f(z) = cosz which passes through the origin. 

7 Find the equation of the normal to y = /= from the external point (4, 0). 

Hint: There is no normal at the point where = = 0, as this is the end point of the function. 

LS INCREASING AND DECREASING 
When we draw a graph of a function, we may notice that the function is increasing or decreasing over 

particular intervals. 

Suppose S is an interval in the domain of f(z), so f(z) is defined for all z in S. 

o f(x) is increasing on S < f(a) < f(b) forall a, b€ S suchthat a <b. 

o f(z) is decreasingon S < f(a) > f(b) forall a,be S suchthat a <b. 

For example, y = 2% is decreasing for 2 < 0 and increasing 
for x> 0. 

  

Important: In this example, people often get confused about the point z = 0. They wonder how the 

curve can be both increasing and decreasing at this point. The answer is that the notion of 

increasing and decreasing is associated with intervals, not particular values for z. y = 22 

is decreasing on the interval x < 0 and increasing on the interval x > 0. 

T, 
Find intervals where f(z) is: 

  

a increasing 

b decreasing. 

  

a f(z) is increasing for = < —1 

and for x > 2. 

b f(z) is decreasing for 
—1<z<2.       
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We can determine intervals where a curve y = f(z) is increasing or decreasing by considering a sign 

diagram of the derivative function f’(z). 

For most functions that we deal with in this course: 

0 forall zin S . . 
positive gradient 

0 for all z in S. 

negative gradient 

      
e f(x) is increasing on S < f'(z) > 

o f(z)is decreasingon S < f'(z) < 

4—;‘—» 

increasing decreasing 

Sign diagrams for the derivative are extremely useful for determining intervals where a function is 

increasing or decreasing. Consider the following examples: 
  

fz)y==z f'(x) =2z which has sign diagram 

v S . S 
. 0. . 

decreasing increasing 

. decreasing for = <0 
z s fl@) =22 s { b = 

increasing for = > 0. 

  

<
 

—~
 

8 -
 Il | 8 

nN 

=3
 & Il —2x  which has sign diagram 

Y ' l 5 + - 
x 

. . 0 . 
< 7T< % increasing decreasing 

. increasing for = < 0 
o flr)=—2% is { 5 = 

decreasing for = > 0. 

  

f(z) ==° bEMO f'(z) = 32% which has sign diagram 

+ &+ 
0 x 

increasing for all 
(never negative) 

f(z) =23 is increasing for all = € R. 
  

f'(x) =32 -3 
=3(z2 - 1) 

=3(z+1)(z—1) 

which has sign diagram 

  

increasing  decreasing  increasing 

increasing for © < —1 and for = > 1 

decreasing for —1 <2 < 1.   
  

flz)=2%-3z+4 is {
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Example 9 ) Self Tutor 

Find the intervals where the following functions are increasing or decreasing: 

a f(z)=-2>+32%+5 b f(z)=3z*—-823+2 

A f(z) = —2® + 322+ 5 TI-84 Plus CE 
f/ (Z) _ 7312 G ?:E?%IEXF;'?G; [N 1] 

= —3z(z—2) 

which has sign diagram: 

    
Maximum 
X=2 

  

So, f(z) is decreasing for x < 0 and for = > 2, and increasing for 0 <z < 2. 

b fzx) =3z* — 8% +2 Casio fx-CG50 
f'(z) _ 121123 _ 24:122 [EXE]:Show coordinates 

= 122%(x — 2) 

which has sign diagram: 

- - + 

  

So, f(z) is decreasing for x < 2, and increasing for z > 2.     
  

Remember that f(z) must be defined for all = on an interval before we can classify the function as 

increasing or decreasing on that interval. We need to take care with vertical asymptotes and other values 

for & where the function is not defined. 

EXERCISE 13C 

1 Write down the intervals where the graphs are: 

  

i increasing il decreasing. 

a b < 
v Y 23) 

3 T 

xT 

d Yy e y 

(5,2) 

T x 
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2 The graph of f(z)=2°—62>+92+2 is shown Ay . fla)=2%—62%+ 9z +2 
alongside. 

a Use the graph to write down the intervals where 

the function is: 

i increasing i decreasing. (1,6) (3,2) 

b Check your answer by finding f/(z) and 

constructing its sign diagram. 

3 The graph of f(z) = 2°—622+10 is shown alongside. 

a Find f'(x), and draw its sign diagram. 

b Find the intervals where f(x) is increasing or 
decreasing.   

  

4 Find the intervals where f(z) is increasing or decreasing: 

a f(z)=2a? b f(z)=—2% 

¢ f(z)=22>+3z—4 d f(x):% 

e f(w):% f f(z) =2 — 622 

g flz)=—22%+4z h f(x) = —42® + 1522 + 18z + 3 

i f(z)=32" — 162° + 242 — 2 I fz)=2%-622+3z—1 

5 Consider the function f(z) = 2% — 322 + 52 + 2. 

a Find f'(x). 

b Show that f’(z) > 0 for all x, and explain the significance of this result. 

¢ Use technology to sketch y = f(x), and check your answer to b. 

  

Example 10 LR R (T 

2z —3 

22+ 22 —3° 

—2z(z — 3) 

(z—1)2(z +3)2 

Consider f(z) = 

a Show that f/(z) = and draw its sign diagram. 

b Hence find the intervals where y = f(z) is increasing or decreasing. 

  

T @+t2-3 
_ 2(2®+22x-3)— (22 —3)(2z +2) 

(22 + 2z — 3)2 

222 + 40— 6 — (422 — 2z — 6) 

((z = 1)(z +3))2 

{quotient rule}
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10 

1 

   

    

     

  

   

    

    

  

—222 + 6z 

(z — 1)2(z +3)2 

—_2(@=8) b has sign diagram: .2.;\&_{1\;. 
(z —1)2(z + 3)2 : —3 01 S 

+
 = & 

b f(z) is increasing for 0 <z < 1 TS 

and for 1 <z <3. 

f(x) is decreasing for x < —3 

and for -3 <x <0 

and for x > 3. 

Let f(z)=z+ g 

(z+3)(z —3) 
x2 

a Show that f/(z) = and draw its sign diagram. 

b Hence find intervals where y = f(z) is increasing or decreasing. 

4z 

22 +1" 

a Show that f/(z) = % 

b Hence find intervals where y = f(z) is increasing or decreasing. 

Consider f(z) =   

and draw its sign diagram. 

4z 

(z— 1) 

a Show that f/(z) = % 

b Hence find intervals where y = f(z) is increasing or decreasing. 

Consider f(z) =   

and draw its sign diagram. 

2 — 
Consider f(x) = kb 

z—1 

a Show that f/(z) = W and draw its sign diagram. z—   b Hence find intervals where y = f(z) is increasing or decreasing. 

. - . . 1 
To find the intervals where f(z) = Inx is increasing or decreasing, Kenneth states that f’(z) = =, 

x 

— i [ 
which has sign diagram 4—(‘);5< ). He therefore concludes that f(z) = Inz is 

increasing for x > 0, and decreasing for 2 < 0. Explain the mistake Kenneth has made. 

Find the intervals where f(x) is increasing or decreasing: 

  

  

a f(z)=e" b f(z)=In(z+2) ¢ f@)=3+e" 

d f(z)=uae” e flx)=x-2x f f(z)=2lnx 

¢ f(z)=x2zi1 h fla)=e" i f(x) = (322 +1)* 

i f@)=at+ = K f(@) =In(a? +4) | f@) = 
r—1 T
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CIN stATioNaRY pOINTS 
A stationary point of a function is a point where f/(z) = 0. At a stationary point, the 

tangent is horizontal. 
It could be a local maximum or local minimum, or else a 

stationary inflection. 

  

TURNING POINTS (MAXIMA AND MINIMA) 

The graph shown has the restricted v D(6,18) 
domain —5 <z < 6. 

  

s]
Y 

  

C:(2, —4) 

A(—5,-163) 

A is a global minimum as it has the minimum value of y on the entire domain. 

B is a local maximum as it is a turning point where f’(2) =0 and the curve has shape /\ . 

C is a local minimum as it is a turning point where f’(2) =0 and the curve has shape \/ . 

D is a global maximum as it is the maximum value of y on the entire domain. 

For many functions, a local maximum or minimum is also the global maximum or minimum. 

For example, for y = z? the point (0, 0) is a local minimum and is also the global minimum. 

STATIONARY POINTS OF INFLECTION 

It is not always true that whenever we find a value of  where f’(z) =0, we have a local maximum 

or minimum. 

For example, f(x) =2® has f'(z) =322, so f(2) =0 when x = 0. 

The tangent to the curve crosses over the curve at O(0, 0). This tangent is 

horizontal, but O(0, 0) is neither a local maximum nor a local minimum. 

Rather, this point is called a stationary inflection (or inflexion) as the 

curve changes its curvature or shape. 
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SIGN DIAGRAMS 

In calculus we commonly use sign diagrams of the derivative function f’(z) to determine the nature of 

a stationary point. 

Consider the graph alongside.    
       

  

   The sign diagram of its gradient function is local . stationary 

shown directly beneath it. maxumum inflection 

The signs on the sign diagram of f’(z) indicate 
  

  

  

- > 

whether the gradient of y = f(x) is positive ; v 
or negative on that interval. ’\ 

DEMO localgmmmum 

+ | — | + | + fl(x) 
- > 

-2 1 3 T 

local local stationary 
maximum  minimum  inflection 

We observe the following properties: 

Stationary point Sign diagram of f'(z) _ e near x—a Shape of curve near v = a 

local maximum 

local minimum 

! ’ 

stationary inflection <;(|1—+f5(z) <;‘;f>(z) 

  

  

To find the stationary points of a function f(z), we find the values of = for which f/(x) = 0. The 

sign diagram of f’(z) tells us whether each stationary point is a local maximum, local minimum, or 

stationary inflection. 

Find and classify all stationary points of f(z) = 2® — 322 — 9z +5. 

(z) = 23 —32° -9z +5 

()—3z —6x—9 

=3(z> -2z -3) 

=3(z—-3)(z+1) 

  

' - AN 
which has sign diagram <—7|1—:‘))—;
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So, we have a local maximum at z = —1 and a local minimum at = = 3. 

f(=1) = (=1 =3(-1)2 = 9(-1) +5 f(3)=3"-3%x32-9x3+5 
=10 =-22 

TI-84 Plus CE Casio fx-CG50 
NORMAL FLOAT AUTO REAL DEGREE MP n 
CALC MAXIMUM O [EXEl:Show coordinates 

Y1 =z"(3)—31¢—9x+g v 

Haximum 
X="1 

  

There is a local maximum at (—1, 10).     
  

EXERCISE 13D 

1 The tangents at points A, O, and B are horizontal. 

a Classify points A, O, and B. 

b Draw a sign diagram for the gradient function 

f/() for all 2. 

¢ State intervals where y = f(x) is: 

  

i increasing ii decreasing. 

d  Draw a sign diagram for f(x) for all z. B(3,—11) 

2 y The graph of f(z) = 2® + 62% — 152 — 40 is 
shown alongside. P and Q are stationary points. 

a Classify points P and Q. 

b Find f/(x). 

¢ Find the coordinates of P and Q. 

  

f(z) =23+ 622 —15z — 40 

3 Consider the function f(z) = %.’L‘?’ — 9z + 4. 

a Find f/(x), and draw its sign diagram. 

Find intervals where the function is increasing and decreasing. 

Find and classify any stationary points. 

Describe the behaviour of the function as © — oo and as = — —oc. 

Sketch the graph of y = f(x), showing the features you have found. ® 
O
 

an
 
O
 

4 Consider the function g(z) = —22°% + 62? + 18z — 7. 

Find ¢’(x), and draw its sign diagram. 

Find intervals where the function is increasing and decreasing. 

Find and classify any stationary points. 

Describe the behaviour of the function as © — oo and as = — —oc. 

Sketch the graph of y = g(z), showing the features you have found. ® 
O
 

an
 
O
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10 

1 

For each of the following functions, find and classify any stationary points. Sketch the function, 

showing all important features. 

a flz)=22-2 b flz)=2%+1 

¢ f(x)=2%-3z+2 d f(z) =2t — 222 

e f(z)=2%—-62"+ 122 +1 f flz)=yz+2 

g flz)=2—7 h flz)=a%—62®+8z—3 

i flz)=1-ayx i f(x)=a*—-222-8 

a For what value of x does the quadratic function f(z) = az®+bx+ec, a # 0, have a stationary 

point? 

b Under what conditions is the stationary point a local maximum or a local minimum? 

[ RD] ORI 1) 

Find the exact position and nature of the stationary point of y = (z —2)e™". 
  

  

j_z =D)e" + (z - 2)e""(-1) {product rule} 

=e *(1-(z—2)) 

= 3;z where e” is positive for all 2. 

So, %=O when z = 3. P . 

The sign diagram of dy is M 
dx 3 @ 

at x =3 we have a local maximum. 

When z =3, y=(1)e 3= L .. the local maximum is at (3, —). _e3 

  

  
Find the position and nature of the stationary point(s) of: 

T 

a y=axe ® b y=a%" c y:% d y=e"(z+2) 

f(z) =22% +aa® — 24z + 1 has a local maximum at z = —4. 

a Find a. b Find the coordinates of the local maximum. 

f(z) =23 +az+b has a stationary point at (—2, 3). 

a Find the values of a and b. 

b Find the position and nature of all stationary points. 

y=" has a stationary point at (l E) 
V=% P 3 2) 

a Find the values of a and b. b State the nature of the stationary point. 

Consider f(z) =zInz. 

a For what values of = is f(x) defined? 

b Show that the minimum value of f(z) is 1 
€
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12 For each of the following, determine the position and nature of the stationary points on the interval 

0 < 2 < 2w, then show them on a graph of the function. 

a f(z)=sinx b f(z) = cos2x 

¢ f(z)=sin’z d f(z)=esin® 

e f(x)=cosz —sinx f f(z) =sin2z +2cosx 

13 The cubic polynomial P(z) = az® 4+ bx? + cx + d touches the line with equation y = 9z +2 at 

the point (0, 2), and has a stationary point at (—1, —7). Find P(z). 

|_Example 13_] ) Self Tutor 
Find the greatest and least value of y = 2% — 622 +5 on the interval —2 < z < 5. 

  

  

Now % —3:2 12 
dx 

=3z(z —4) 

dy —= =0 when z=0or4. 

    

i 0 4 & 

there is a local maximum at = = 0, and a local minimum at = = 4. 

Critical value () 

—2 (end point) 

If an interval is given, we 

must also check the value of 

. the function at the end points. 
0 (local maximum) 

  

4 (local minimum) 

5 (end point) 
o) 

The greatest of these values is 5 when z = 0. fi 

v 

  

The least of these values is —27 when = = —2 and when x = 4.     
14 Find the greatest and least value of: 

a 28 —12r -2 for -3< 2 <5 b 4-3z2+2° for —2< <3 

< x2+E for 1<z <4 d x—4yx for 0< <5 
xT 

15 Show that y =4e™*sinz has a local maximum when = = 7. 

16 Consider f(x)=sinzcos2z for 0 <z < 7. 

a Find f/(x) in terms of cosz only. 

b Show that f’(z) =0 when cosz =0 or ::\/%.   

¢ Hence find the position and nature of the turning points of y = f(x). 

d Graph y = f(x), showing the features you have found. 

17 f(t) = ate’” has a maximum value of 1 when ¢ =2. Find constants a and b.
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18 Prove that Iz < 1 for all x> 0. 
€ x 

19 Consider the function f(z) =2 —Inx. 

a Show that y = f(x) has a local minimum and that this is the only turning point. 

b Hence prove that Inz <z —1 forall x> 0. 

CE— s 
We have seen that the first derivative f/(x) gives the gradient of the curve y = ) for any value of z. 

The second derivative f”(z) tells us the rate of change of the gradient f’ (r) It therefore gives us 

information about the shape or curvature of the curve y = f(x). 

When a curve, or part of a curve, has shape: 

/—\ we say that the curve is concave downwards 

\/ we say that the curve is concave upwards. 

For example: 

e the curve f(x) = —a? is concave downwards 

m=0 Wherever we are on the curve, as x increases, 

the gradient of the tangent decreases. 

f(x) is decreasing 

f"(x) <0 

Wherever we are on the curve, as x increases, 

the gradient of the tangent increases. 

f/(x) is increasing 

f(z) >0 

  

We conclude that: 

e A curve is concave downwards on an 

interval S < f(x) <0 forall z € S. 

e A curve is concave upwards on an \/4 

interval S < f”(z) >0 forall x € S.
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e AL o) Self Tutor 

Find intervals where the curve is concave up or concave down: 

a y=22°—322+42—6 b f(x):zir; 

  

y=22%—32%+ 42— 6 
(RN 

= =62 — 6z +4 ) _ (W@=3)—(@+ 1)) 
- (z—3)2 

_x—3—-z—1 

T (@-3)2 
= —4(z—3)72 

o f(z) =8(x-3)"° 

The curve is concave up for = > % and — i+ [ 

1 3 [ concave down for = < 5. 

The curve is concave up for = > 3 and 

concave down for x < 3. 

  

EXERCISE 13E 

1 a Complete the table by indicating whether each 

value is zero, positive, or negative: 

  

II 

b Describe the turning points of y = f(x). 

  

¢ At which point does the shape of y = f(z) change? 

2 The graph of f(z) =% +32% —52+2 is shown f(x) 
alongside. fz)=a®+32%— 5 +2 

a Find f/'(z) and f’(x). 

b Draw the sign diagram of f”/(z). 

    
  

2Y
 

¢ State the interval on which the function is: 

i concave up il concave down. 

3 Determine the shape of each quadratic function: 

a y=222-3r+4 b y=-2z-3)(z+1) 

¢ y=-4—22+6z d y=056-z)(1-22)
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4 For each of the following functions, determine the interval(s) on which the function is: 

i increasing i decreasing iii  concave upwards iv concave downwards. 

a f(x)=22+1 b f(z)=—2® ¢ flz)= 

_ _ oy L ) — d 19,2 =x—2 e f(z) 7 f flz)=a'—122 

5 Consider f(z)=In(2z—1)— 

a Find the z-intercept. 

Can f(0) be found? What is the significance of this result? 

Find the domain of f. 

Find the gradient of the tangent to the curve at = = 1. 

Find f”(z), and hence explain why f(z) is concave down for all « in the domain of f. 

Graph the function, showing the features you have found. -
0
 

0 
an 

O 

6 Consider f(z)=Inz. 

a For what values of z is f(x) defined? 

b Draw the sign diagrams of f/(x) and f”(x), and give a geometrical interpretation of each. 

¢ Find the equation of the normal to y = f(z) at the point where y = 1. 

7 Consider the function f(z) = < 
T 

Does the graph of y = f(z) have any z or y-intercepts? 

Discuss f(z) as  — oo and as x — —o0. 

Find and classify any stationary points of y = f(z). 

Find the intervals where f(z) is: i concave up ii concave down. 

Sketch the graph of y = f(x), showing all important features. 

Find the equation of the tangent to f(z) = — at the point where x = —1. 

CEE iwkcrion pows 
A point of inflection is a point at which the tangent to the curve crosses the curve. 

At a point of inflection, f”(x) = 0. 

- 
0 

0 
A 

O 
o 

  

   

  

DEMO 

(mtx/ point of \ 
inflection inflection 

If the tangent at a point of inflection is horizontal, then this is a stationary inflection point. 

. . - ! 

stationary inflection f’(:fl) has sign diagram — - f(x) 
/ a T 

tangent gradient =0 

‘ " ien di /" (z) f"(x) has sign diagram _+ -   
y=/(z) @ v
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If the tangent at a point of inflection is not horizontal, then this is a non-stationary inflection point. 

non-stationary inflection 
tangent f( ) 

gradient # 0 v=f(@) f/(x) has sign diagram <—|—|i>     
f"(z) has sign diagram <—|—Z (=) 

r=b x=a xz=c 

The tangent at the point of inflection, also called the inflecting tangent, crosses the curve at that point. 

There is a point of inflection at © =a if f”(a) =0 and the sign of f”(x) changes at x = a. 

The point of inflection is a: 

o stationary inflection if f'(a) =0 e non-stationary inflection if f’(a) # 0 

Notice that if f(z)=a* then f'(x)=4a® 

and f'(z) = 1222 

f"(z) has sign diagram + + f'@) 

  

Although f”/(0) =0 we do not have a point of inflection at 

(0, 0) because the sign of f”(x) does not change at 2 = 0. 

SUMMARY 

local minimum (0, 0) 

     
   

    
      turning points non-stationary inflections    stationary 

inflections 

stationary points inflections 

f'(2)=0 J'(@)= 
and change of sign 

Click on the demo icon to examine some common functions for turning points, points of DEMO 

inflection, and intervals where the function is increasing, decreasing, and concave up or 

down. 

  

  

Consider f(x) = 32* — 162° + 2422 — 9. 

a Find and classify all points where f/(z) = 0. 

b Find and classify all points of inflection. 

¢ Find intervals where the function is increasing or decreasing. 

d Find intervals where the function is concave up or down. 

e Sketch the function showing the features you have found. 
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a f(z) = 32" — 1623 + 242% — 9 

f'(x) = 122 — 4822 + 48z - f/() has sign diagram: 

=122(2® — 4z 4 4) _ 4 L [ 
<—l—|—> 

= 12z(z — 2)? 0 2 

Now f(0)=-9 and f(2)= 

(0, —9) is a local minimum and (2, 7) is a stationary inflection. 

       
   

  

   

    

b f(z) =362 — 96z + 48 - f"(x) has sign diagram: 

=12(32% — 8z + 4) + _ + () 

=12(z — 2)(3z — 2) e 2 @ 

Now f(2)~ —2.48 

b 18 a station: inflection an e 1s a non-stationary inflection. 2,7) i ionary inflecti d g 2.48) i ionary inflecti 

¢ f(x) is decreasing for < 0 e §tegiongry 
- p inflection 

f(x) is increasing for = > 0. y=f(z) 27) 

\ d  f(x) is concave up for # < 2 and z > 

f(x) is concave down for 2 <z < 2. 

    

~—(%,—2.48) 
non-stationary (0,-9)—= 
inflection 

local minimum   
  

EXERCISE 13F 

1 In the diagram alongside, each labelled point 

corresponds to a zero of f(z), f'(z), or f(x). 

a Complete the table by indicating whether each 

value is zero, positive, or negative: 

  

b Describe the turning point of y = f(z). 

  

¢ Describe the inflection points of y = f(x). 

2 Find and classify all points of inflection of: 

a f(z)=22+3 b f(z)=2-2° 

¢ flz)=2a%—-62+9z+1 d f(z)=-32%—82®+2 

e f(x):?;f% f f(z)=2%+622+122+5 

  g f(x)=2>+8/z h f(z)=a%—62%+10
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3 For each of the following functions: 

i Find and classify all turning points. 

il Find and classify all points of inflection. 

iii  Find intervals where the function is increasing or decreasing. 

iv Find intervals where the function is concave up or down. 

v Sketch the function showing the features you have found. 

a f(x)=2"-bzx+4 b f(z )=x3+412 

¢ flz)=yx fz)= 224z +1 

e f(z)=32*+42° -2 f fz)= (z—l) 

g flx)=a"—42>+3 (x)=3—% 

Example 3 l1>)) Self Tutor 

Consider the function y =2 — e~ 7. 

  

a Find the z-intercept. b Find the y-intercept. 

¢ Show algebraically that the function is increasing for all z. 

d Show algebraically that the function is concave down for all . 

e Explain why y =2 is a horizontal asymptote. 

f Sketch y =2 —e*, showing the features you have found. 

a When y=0, e =2 b When =0, y=2—-e’=1 

—z=1n2 .. the y-intercept is 1. 

. z=—In2 

the z-intercept is —In2 ~ —0.693 

W _g_er(cl)mer= L Py _ o cdz—O e?(-1)=e S ddzz—e (-1) 

Now ¢ >0 forallz, ——L whichis <0 foralla. 
€ 

Y 
SOl 0 forall z. .. the function is concave down for all . 

the function is increasing for all z. 

=4y e As z—o0, €% —0 f 

y—2 
Hence the horizontal asymptote is y = 2. 

  

      

4 Consider the function f(z) = e** — 3. 

a Find the 2 and y-intercepts. 

b Show algebraically that the function is increasing for all x. 

¢ Find f”(z), and hence explain why f(z) is concave up for all z.
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5 

10 

d Explain why y = —3 is a horizontal asymptote. 

e Sketch y = e** — 3, showing the features you have found. 

Suppose f(z) =¢* —3 and g(z) =3 —5e *. 

a Find the  and y-intercepts of both functions. 

b Discuss f(z) and g(x) as x — oo and as = — —o0. 

¢ Draw the sign diagrams of f/(z), f”(x), ¢'(z), and g¢’(x) and give a geometrical 
interpretation of each. 

d Find algebraically the point(s) of intersection of the functions. 

e Sketch the graphs of both functions on the same set of axes. Show all important features on 

your graph. 

Consider the function y = e® — 3e™". 

a Determine the x and y-intercepts. b Prove that the function is increasing for all z. 
2 

¢ Show that Z—g = y. What can be deduced about the concavity of the function above and 
L 

below the z-axis? 

d  Use technology to help graph y = e¢” — 3e™*. Show the features you have found. 

. . o 1 —2a? 
A function commonly used in statistics is the standard normal curve f(x) = —e 2" 

Var 

a Find the turning points of the function, and find the intervals where the function is increasing 

and decreasing. 

b Find all points of inflection. ¢ Discuss f(z) as 2 — oo and as & — —oc. 

d  Sketch the graph of y = f(x), showing all important features. 

Consider the function f(z) = cosz. 

a Show that f”(z) = —f(z). What does this tell us about the location of the inflection points? 

b Find and classify the inflection points of f(z) on 0 < z < 2. 

¢ Find the intervals on 0 < z < 27 where f(x) is: 

i increasing i decreasing il concave up iv concave down. 

d  Sketch the graph of y = f(x) on 0 < x < 2w, showing all important features. 

Consider the surge function f(t) = Ate™", t >0, where A and b are positive constants. 

a Prove that the function has: 

o
 i alocal maximum at ¢ = 3 ii a point of inflection at ¢ = 

b Sketch the function, showing the features you have found. 

C 
TT A t >0, where A, b, and C' are positive constants. 

e 

Consider the logistic function f(t) = 

a Find the y-intercept. 

b Prove that: 

i y=C isits horizontal asymptote 

ii if A >1, there is a point of inflection with y-coordinate 7 

¢ Sketch the function, showing the features you have found.
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UNCTIONS 
RIVATIVES 

In this Chapter we have seen that, given a function f(z): 

e The sign of f/(z) tells us intervals where f(z) is increasing or decreasing. 

e The zeros of f/(x) indicate stationary points. 

e The sign of f”(x) tells us the shape of f(z). 

e The zeros of f”(x) indicate points of inflection provided f”(z) changes sign at that point. 

We can use these properties to analyse how the graphs of y = f(z), y = f/(z), and y = f"(z) are 

related. 

  

€L T PR b ) Self Tutor 

Using the graph of y = f(z) alongside, sketch Ay 

the graphs of y = f/(z) and y= f"(x). y=[(x) 

  

The local minimum A corresponds to 

f'(x) =0 and f"’(z) #0. 

The non-stationary point of inflection B 

corresponds to f’(z) # 0 and f”(z) =0. 

The stationary point of inflection C corresponds 

to f/(z)=0 and f"(x)=0. 

       
non-stationary stationary 

point of inflection point of inflection       
  

EXERCISE 13G 

1 Using the graphs of y = f(z) below, sketch the graphs of y = f’(z) and y = f”’(z). Show 
clearly the axes intercepts and turning points. 

< y o y=f(a) 
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Example 18 '1>)) Self Tutor 

  

  

    

      

The graph alongside shows a gradient function y y=f(x) 

y = f'(2). 
Sketch a graph which could be y = f(z), 

showing clearly the z-values corresponding to all - - 

stationary points and points of inflection. 

The stationary points of f(x) are when f/(x) = 0. These correspond to A, C, and E. 

The sign diagram of f/(z) is _ + _ + fl2) 
—6 =1 5 @ 

A and E correspond to local minima, and C corresponds to a local maximum. 

f'(z) is amaximum when z = —4 

and a minimum when z ~ 2%. y=f'(z) 

At these points f”(z) =0 but 

f'(z) 7é 0, so tl'ley cor.respon.d to - . 
non-stationary points of inflection. ) 

non-stationary local 
point of inflection min     

  

2 For each graph of y = f’(x) below, sketch a graph which could be y = f(z). Show clearly the 

location of any stationary points and points of inflection. 

b 

   
3 For the function g(z), the sign diagrams for ¢’(x) and _ _ + g'(2) 

¢"(x) are shown alongside. 0 4 T 

The points A(0, 2), B(2,0), and C(4, —2) all lie on 

y=g(2). Lt - +  g'@ 
0 2 T Sketch y = g(z), labelling the stationary points.
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  ACTIVITY 

Click on the icon to run a card game on curve properties. CARD GAME 

REVIEW SET 13A 

1 Find the equation of the tangent to: 

  

a y=—222 at the point where = = —1 b y=2>-52+2 at (2,0) 

1-2z 
—— at (1, —1) d f(x) =1 at the point where x =0   ¢ y= 

e f(z) =1In(z?) at the point where x = e. 

2 Find the equation of the normal to: 

a y=+3zx+4 at (4,4) b y = 3e>® at the point where x = 1. 

3 At the point where z = 0, the tangent to f(z) = €** + pz + ¢ has equation y = 5z — 7. 

Find p and q. 

& Find all points on the curve y = 223 + 322 — 10z + 3 where the gradient of the tangent is 2. 

a 

(@+2)* 
6 Find where the tangent to y = 2% +4x — 1 at (1, 5) meets the curve again. 

5 The line through A(2, 4) and B(0, 8) is a tangentto y = Find a.   

7 a Find the equation of the normal to y = e?® at the point where z = a. 

b Hence find the equation of the normal to y = e?® which passes through the origin. 

8 Find the coordinates of P and Q if (PQ) Yy 

. 5 
is the tangent to y = 7 at (1, 5). 

  

8Y
 

  

9 The tangent to y = 2%\/T —x at x = —3 cuts the axes at points A and B. 

Determine the area of triangle OAB. 

10 Find intervals where f(x) = —a® — 622 + 362 — 17 is: 

a increasing b decreasing. 

11 Consider the function f(z) = 22° — 32% — 362 + 7. 

a Find and classify all stationary points. 

Find intervals where the function is increasing and decreasing. b 

¢ Describe the behaviour of the function as z — oo and as © — —oo. 

d Sketch the graph of y = f(x) showing the features you have found.
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  12 Consider the function f(z) = dr 2 
z+3 

a State the domain of f(z). b Find the axes intercepts. 

¢ Find f/(z) and draw its sign diagram. d Does f(z) have any stationary points? 

13 Find the greatest and least values of x + % for 2 <z < 10. 
T 

14 Consider f(z) = ze'=27. 

a Show that f/(z) = e!=2%(1 — 2u). 

b Find values of = for which: 

i f(z)>0 il f/(z)>0 

¢ Find the stationary point of y = f(z), and determine its nature. 

15 Find intervals where f(z) is increasing or decreasing: 

  

a f(z) =262 b f(z)=e"(z—2) ¢ f(r) =2z —sinz 

16 Find and classify the stationary points of: 
2 

) — 3192 _ o _ .z a f(z)=-2°+22"-2+3 b f(z) - 

17 For each of the following, determine the position and nature of the stationary points on the 

interval —7 < 2 < 7, then show them on a graph of the function. 

b y=cos’x ¢ y=cos2zr —2sinx 

f(z) 

£ a y=sing 

18 The graph of f(z) = 22%—32%+x—12 is shown 
alongside. 

a Find f'(z) and f"(z). 

b Draw the sign diagram of f/(z). 

    

    

  

¢ State the interval on which the function is 

concave down. 

d Find the point at which the shape of f(z) 

changes. 

f(z)=22%—-322+z—12 

19 Find intervals where the curve is concave up or concave down: 

7m+1 z+2 

22 
    a y=a—422+11 b y= 

20 Consider the function f(z) =+ Inz. 

a Find the values of z for which f(z) is defined. 

b Draw the sign diagrams of f’() and f”(x), and give a geometrical interpretation of each. 

¢ Sketch the graph of y = f(x). 

21 Consider the function f(z) = e”¥3sin . 

a Find f/(x). b Findz on 0 <z <27 such that f/(z)=0. 

¢ Draw the sign diagram for f/(z) on 0 <z < 2m. 

d Determine the intervals on 0 < z < 27 for which f(z) is: 

i increasing ii decreasing.
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22 Consider the function f(z) = In(x? +5). 

a Find and classify any turning points. b Find and classify any points of inflection. 

¢ Find intervals where the function is increasing or decreasing. 

d Find intervals where the function is concave up or down. 

e Sketch the function, showing the features you have found. 

23 Consider the function f(z) = esin’'T 0L g m 

a Find the exact value(s) of = at which f(x) has a maximum turning point. 

b Find any points of inflection in the given domain. 

24 The graph of y = f(z) is given. J 

On the same set of axes, sketch the graph of : 

y=f'(=). 

  

i y=#(z) 

25 The graph of y = f/(z) is drawn. 

On the same set of axes, clearly draw a possible graph 

of y = f(z). Show all turning points and points of 

inflection. 

  

  REVIEW SET 13B 

1 Find the equation of the tangent to: 
1 
  

  

a f(x)=2*-222+72 -3 at (2,19) b f(z)= NeEa at (9, §) 

¢ f(r)=3sin2z when z=1% d f(x):ze_z when z = 0. 

2 Find the equation of the normal to: 

a y= z—lz = % at the point where z =1 b y=xsinz at the origin. 

3 The curve y = 22° +ax +b has a tangent with gradient 10 at the point (—2, 33). Find the 

values of a and b. 

  4 Show that y =2 — has no horizontal tangents. 
1+ 2z 

5 y= f(x) is the parabola shown. 

a Find f(3) and f/(3). 

b Hence find f(x) in the form 

f(2) = az® + bz +c. 
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10 

12 

13 

14 

15 

16 

17 

The tangent to y = 2° + aa? — 42+ 3 at 2 =1 is parallel to the line y = 3a. 

a Find a. 

b Find the equation of the tangent at x = 1. 

¢ Where does the tangent cut the curve again? 

Find the point where the normal to y = 22 —4x +2 at x =3, meets the curve again. 

Find the equation of the tangent to: 

T 
1 5 A 

a y= at the point where x = % b y=cos5 atthe point where x = 7. 
sinx 3 

Show that the curves with equations y = v/3z+1 and y = v/5z — 22 have a common 

tangent at their point of intersection. Find the equation of this common tangent. 

  

ar+b 

VT 

Find intervals where f(z) = x* —4a® — 822 +5 is: 

The tangent to y =   at © =1 has equation 2z —y = 1. Find @ and b. 

a increasing b decreasing. 

f(z) = 2® — 32> + ax + 50 has a stationary point at x = 3. 

a Find a. 

b Find the position and nature of all stationary points. 

Consider the function f(z) = 2% — 422 + 4z. 

a Find all axes intercepts. 

Find and classify all stationary points. 

Find intervals where the function is increasing and decreasing. 

Describe the behaviour of the function as © — oo and as © — —oc. 

® 
O
 an 
O
 

Sketch the graph of y = f(z) showing the features you have found. 

Consider the function f(z)=e* — . 

a Find and classify any stationary points of y = f(z). 

b Discuss what happens to f(z) as = — oo. 

¢ Find f”(z) and draw its sign diagram. Give a geometrical interpretation for the sign of 

[ (). 
d Sketch the graph of y = f(x). 

e Deduce that e* > 2z + 1 for all x. 

41 

22 — 2z — 8’ 

_ 22422+6 

(z2 — 2z — 8)2 

b Hence show that f(z) is never increasing. 

Suppose f(z) = 

a Show that f/(z) = and draw its sign diagram. 

T +a q 
= where a is a constant.   Find and describe the stationary point of y = 

flz) = G has a stationary point at (E, 3) Find a and b. 
bx 2" 3e 
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18 

19 

20 

21 

23 

24 

25 
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Determine the interval(s) on which the function f(z) = ,%‘1,4 + 23+ 622 — 3z +2 is: 

a increasing b decreasing ¢ concave upwards d concave downwards. 

Find and classify the inflection points of: 

a y=2*—-3224+9 b y=—a*+23+922+1 

Consider f(z) = \/cosz for 0 <z < 2. 

a For what values of z in this interval is f(z) defined? 

b Find f/(x) and hence find intervals where f(x) is increasing or decreasing. 

¢ Sketch the graph of y = f(z) on 0 <z <27 

Consider the function f(z)=a* —42% + 7. 

a Find f/(z) and f”(z), and draw their sign diagrams. 

b Find and classify any turning points. 

¢ Find and classify any points of inflection. 

d Find intervals where the function is: 

i increasing ii decreasing iii concave up iv concave down. 

e Sketch the function, showing all important features. 

For the function f(z) = cos?z, 0 <z < 2m: 

a Find and classify all turning points. 

b Find and classify all points of inflection. 

¢ Sketch the function, showing the features you have found. 

T 
  Consider the function f(z) = T g 

Find the y-intercept of the function. 

For what values of z is f(x) defined? 

Find the signs of f/(x) and f”(x) and comment on the geometrical significance of each. 

Sketch the graph of y = f(z). 

Find the equation of the tangent at the point where = = 2. ® 
O
 

A 
O 

o 

Given the graph of y = f/(z) drawn alongside, sketch a Y 

possible curve for y = f(z). Show clearly any turning y=f'(z) 

points and points of inflection. 

  

For the function f(z), f’(z) >0 and f”(z) <0 forall z€R, f(2)=1, and f'(2)=2. 

a Find the equation of the tangent to f(z) where z = 2. 

b On the same set of axes, sketch y = f(z) and the tangent to the curve where x = 2. 

¢ Explain why f(z) has exactly one zero. 

d Estimate an interval in which the zero of f(x) lies.



  

Applications of 

differentiation 
Contents: A Rates of change 

B Optimisation 
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OPENING PROBLEM 

On the Indonesian coast, the depth of water ¢ hours after [ | 

midnight is given by D = 9.3 + 6.8 cos(0.507¢) metres. 

Things to think about: 

@ What is the derivative function % and what does 

it tell us? 

b What is the depth of water at 8 am? 

¢ Is the tide rising or falling at 8 am? Explain your ) - 

answer. 

d At what time(s) is the tide highest on this day? What is the maximum depth of water? 

  

We have already seen that if y = f(z) then f/(z) or Z—y gives the gradient of the tangent to y = f(x) 
X 

for any value of z. 

In this Chapter we consider some real-world applications of differential calculus, using derivatives to tell 

us how one variable changes relative to another. 

HANGE 
There are countless examples in the real world where quantities vary with time, or with respect to some 

other variable. 

  

For example: 

e temperature varies continuously 

o the height of a tree varies as it grows 

e the prices of stocks and shares vary with each day’s trading. 

d—y gives the rate of change in y with respect to x. 
T 

We can therefore use the derivative of a function to tell us the rate at which something is happening. 

For example: 

. % or H'(t) could be the instantaneous rate of ascent 

of a person in a Ferris wheel. 

It might have units metres per second or ms™!. 

dc . 
o —-or C’(t) could be a person’s instantaneous rate of 

change in lung capacity. 

It might have units litres per second or Ls~!. 
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According to a psychologist, the ability of a child to understand spatial concepts is given by 

A= %\/Z where ¢ is the age in years, 5 < ¢ < 18. 

a Find the rate of improvement in ability to understand spatial concepts when a child is: 

i 9 years old il 16 years old. 

b Show that % >0 for 5 <t <18 Comment on the significance of this result. 

2A 
¢ Show that 37 <0 for 5<t<18 Comment on the significance of this result. 

  

@4 = f% . 
dt 6Vt 

i When t=09, %:% ii When t =16, %:fi 
dt dt 

-, the rate of improvement is %s units .. the rate of improvement is fi units 

per year for a 9 year old child. per year for a 16 year old child. 

5 5 g 1 3 5 
b Since /7 is never negative, v is never negative 

dA 
— >0 forall 5<¢<18. 
dt 

This means that the ability to understand spatial concepts increases with age. 

  

fi = lt7§ 
dt ¢ 

dZA:7Lt—%:7 1 
dt? 12 12t\/¢ 

d?A 
W<O forall 5<t<18. 

This means that while the ability to understand spatial concepts increases with age, the rate of 

increase slows down with age.     
i i GRAPHING You are encouraged to use technology to graph each function you need to consider. AN 

This is often useful in interpreting results. 

EXERCISE 14A 

1 The estimated future profits of a small business are given by P(t) = 2t> — 12t 4+ 118 thousand 

dollars, where t is the time in years from now. 

a What is the current annual profit? 

b Find % and state its units. 

. dpP . . 
¢ Find when ¢ = 8. Explain what this value means. 

at
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2 In a hot, dry summer, water is evaporating from a desert oasis. The volume of water remaining after 

t daysis V =2(50—t)> m3. Find: 

a the average rate at which the water evaporates in the first 5 days 

b the instantaneous rate at which the water is evaporating at ¢ = 5 days. 

3 The quantity of a chemical in human skin which is responsible for its “elasticity” is given by 

Q(t) = 100 — 10y/T where t is the age of a person in years. 

a Find Q(t) when: 

i t=0 i t=25 iii ¢ =100 years. 

b At what rate is the quantity of the chemical changing when the person is aged: 

i 25 years i 50 years? 

¢ Show that the quantity of the chemical is decreasing for all ¢ > 0. 

& The height of pinus sylvestris is given by 

172. . 
H =35-— % metres, where ¢ is the number of years after 

the tree was planted from an established seedling. 

a How high was the tree when it was planted? 

b Find the height of the tree after: 

i 4 years ii 8 years il 12 years. 

¢ Find the rate at which the tree was growing after 0, 5, and 

10 years. 

   

  

d  Show that ‘Z—It{ >0 forall ¢>0. Explain the significance 
. 

of this result. 

Example 2 l1>)) Self Tutor 

The cost in dollars of producing z items in a factory each day is given by 

C(z) = 9500 + 12z + 8205, 

Find C’(z), which is called the marginal cost function. a 

b Find the marginal cost when 150 items are produced. Interpret this result. 

¢ Find C(151) — C(150). Compare this with the answer in b. 
  

a The marginal cost function is 

C'(x) = 12+ 6.42~%2 dollars per item. chord — / C(151) 

b C’(150) ~ $14.35 
(c answer) 

This is the rate at which the costs are increasing with 

respect to the production level  when 150 items are 

made per day. 

It gives an estimate of the cost of making the 151st 

item each day. 

¢ C(151) — C(150) ~ $11754.87 — $11740.52 150 151 
~ $14.35 

This is the actual cost of making the 151st item each day, so the answer in b gives a very 

good estimate. 

   

  

   

    
tangent 

(b answer) 
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Seablue make denim jeans. The cost model for making x pairs per day is 

C(x) = 7800 + 6z + 122%7 dollars. 

a Find the marginal cost function C’(x). b Find C’(220). What does it estimate? 

¢ Find C(221) — C(220). Discuss your answer. 

The total cost of running a train from Paris to Marseille is 
200000 . 

euros where v is the   given by C(v) = $0? + - 

average speed of the train in kmh~!. 

a Find the total cost of the journey if the average speed is: 

i 50 kmh~! il 100 kmh~1. 

b Find the rate of change in the cost of running the train 

for the average speed: 

i 30 kmh™! il 90 kmh~!. 

¢ At what speed will the cost be a minimum? 

  

A tank contains 50000 litres of water. The tap is left fully on and all the water drains from 

the tank in 80 minutes. The volume of water remaining in the tank after ¢ minutes is given by 
2 

V = 50000 (1 - %) litres where 0 < t < 80. 

a Find %, and draw the graph of % against £. 

b At what time was the outflow fastest? 
2 

¢ Show that % is always constant and positive. Interpret this result. 

Alongside is a land and sea profile where 

the z-axis is sea level. 

The function y = La(x — 2)(z — 3) km 

gives the height of the land or sea bed 

relative to sea level at distance z km from 

the shore line. 

  

a Find where the lake is located relative to the shore line of the sea. 

. d . . 
b Find d_y and interpret its value when = = % km and when z = 1% km. 

X 

¢ Find the deepest point of the lake, and the depth at this point. 

t A radioactive substance decays according to the formula W = 20e~** grams where ¢ is the time 

in hours. 

a Find k given that the weight is 10 grams after 50 hours. 

b Find the weight of radioactive substance present: 

i initially i after 24 hours iii after 1 week. 

¢ How long will it take for the weight to reach 1 gram? 

d Find the rate of radioactive decay after: 

i 100 hours ii 1000 hours. 

e Show that % = bW for some constant b.
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10 The temperature of a liquid after being placed in a refrigerator is given by 7 = 5 + 95¢~%* °C 

where £ is a positive constant and ¢ is the time in minutes. 

a Find k if the temperature of the liquid is 20°C after 15 minutes. 

b What was the temperature of the liquid when it was first placed in the refrigerator? 

T 
¢ Show that il_t =¢(T —5) for some constant c. 

d At what rate is the temperature changing: 

i initially ii after 10 minutes iii after 20 minutes? 

11 The height of a shrub ¢ years after it was planted is given by H(¢) = 201n(3t+2)+30 cm, ¢ > 0. 

a How high was the shrub when it was planted? 

b How long will it take for the shrub to reach a height of 1 m? 

¢ At what rate is the shrub’s height changing: 

i 3 years after being planted ii 10 years after being planted? 

12 1In the conversion of sugar solution to alcohol, the amount of alcohol produced ¢ hours after 

the reaction commenced is given by A = s(1 — e~**) litres, where s is the original sugar 

concentration (%), ¢ > 0. 

a Find A when t =0. 

b Suppose s =10, and A =5 after 3 hours. 

i Find k. il Find the speed of the reaction after 5 hours. 

ECITEN 
Cathy is using a compass to draw a circle. The arm with the 

needle is 8 cm long, and the arm with the pencil is 9 cm in e . 
. cm total. The angle between the arms is 6. 9em b 

= 

  

a Write the radius of the circle to be drawn in terms of 6. 

b Hence find the rate of change in r with respect to ¢ when o 

0 = 60°. 

a Using the cosine rule, 2 =9248—2x9x8xcosf 

r =145 — 144 cos 6 {since r >0} 
1 
2 

° s . For calculus, 6 must be 

% = 1(145 — 144 cos0) 2 (144sin0) measured in radians! 

_ 72sin 6 

V145 — 144 cos 6 

) 72(42 
When 0 =%, A N - 

0 

  

1 
145 — 144(5) 

~ 7.30 cm per radian 

~ 0.127 cm per degree    
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13 Find exactly the rate of change in the area of triangle PQR as 6 Q 

changes, at the time when 6 = 45°. 6 
cm 

7 cm R 

14 A set of retractable stairs is used to gain access to an attic. 

The frame uses a pantograph mechanism which is a set of 

rhombuses with variable angles to control the retraction. 

Each rhombus has side length 20 cm, and the angle where 

the arms meet is #, as shown. 

Pantographs are used 

extensively for electric 

train and tram systems.     
a Find a formula for the length [ between the pivots, in terms of 6. 

b Hence find the rate of change in [ at the time when 6 = 120°. 

15 The voltage in a circuit is given by V() = 340sin(1007t) volts where ¢ is the time in seconds. 

a Find the voltage in the circuit: 

i initially i after 0.125 seconds. 

b At what rate is the voltage changing: 

i when ¢=0.01 il when V(¢) is a maximum? 

16 The number of bees in a hive after ¢ months is modelled 

3000 
by B(t) = g5t 

a Find the initial bee population. 

b Find the percentage increase in the population after 

1 month. 

¢ Is there a limit to the population size? If so, what is 

it? 

d Find B'(t), and use it to explain why the population 

is increasing over time. 

  

e Find the rate at which the population is increasing after 6 months. 

f Sketch the graph of B(t).



352 APPLICATIONS OF DIFFERENTIATION (Chapter 14) 

IR opmmsamion 
Optimisation is the process of finding the maximum or minimum value of a function. The solution is 

often referred to as the optimal solution. 

We can find optimal solutions in several ways: 

e using technology to graph the function and search for the maximum or minimum value 

e using analytical methods such as the formula = = 721 for the vertex of a parabola 
a 

e using differential calculus to locate the turning points of a function. 

These last two methods are useful especially when exact solutions are required. 

You should always be aware that: 

The maximum or minimum value does not always occur when the first derivative is zero. 

It is essential to also examine the values of the function at the end point(s) of the interval under 

consideration for global maxima and minima. 

For example: dy 
E_O 

  

The maximum value of y occurs at the end point x = b. 

The minimum value of y occurs at the local minimum z = p. 

TESTING FOR LOCAL MAXIMA AND MINIMA 

If we find a value x = a such that f’(a) =0, there are several tests we can use to see whether we 
have a local maximum or a local minimum at this point. 

SIGN DIAGRAM TEST 

If, near to = = a, the sign diagram is: 

° + _ we have a local maximum . _ + we have a local minimum. 

a T a T 

SECOND DERIVATIVE TEST 

o If f’(a) <0 wehave ¢\ shape, which indicates a local maximum. 

e If f”(a) >0 wehave X_f shape, which indicates a local minimum.
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OPTIMISATION PROBLEM SOLVING METHOD 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Draw a large, clear diagram of the situation. 

Construct a formula with the variable to be optimised as the subject. It should be written 

in terms of one convenient variable, for example =. You should write down what domain 

restrictions there are on z. 

Find the first derivative and find the value(s) of = which make the first derivative zero. 

For each stationary point, use the sign diagram test or second derivative test to determine 

whether you have a local maximum or local minimum. 

Identify the optimal solution, also considering end points where appropriate. 

Write your answer in a sentence, making sure you specifically answer the question. 

el ) Self Tutor 

Step 1 

  

A rectangular cake dish is made by cutting out 

squares from the corners of a 25 cm by 40 cm 

rectangle of tin-plate, and then folding the metal 

to form the container. 

What size squares must be cut out to produce the 

cake dish of maximum volume? 

: Let x cm be the side lengths of the 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

  

  

    

  

  

squares that are cut out. 

  

      
Volume = length x width x depth 

= (40 — 2z)(25 — 2z)x 

= (1000 — 80z — 50z + 42%)x zem: 
_ _ 2 3 3 KN ‘ = }0009: 1302 + 4 om T f e 

Since the side lengths must be positive, 

x>0 and 25— 22 > 0. 

0<z<125 

2% = 122* — 260 + 1000 pEMO 
X 

= 4(322 — 65z + 250) 
= 4(3z — 50)(z — 5) 

av h _ 50 _ 1p2 _ E_O when z—?—16§ or t=25 

z=5 as 0<z <125 

Z—V has sign diagram: -~ N = & 
“ 5 I 

0 12.5 

There is a local maximum when x = 5. This is the global maximum for the given 

domain. 

The maximum volume is obtained when x =5, which is when 5 cm squares are cut 

from the corners. 
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Example 5 o) Self Tutor 

A 4 litre container must have a square base, vertical sides, and an 

open top. Find the most economical shape which minimises the 

surface area of material needed. 

  

Step 1: Let the base lengths be z cm and the depth be y cm. 

The volume V' = length x width x depth 

V=gl 

. 4000 =%y .. (1) {1 litre = 1000 cm®} 

  

T cm 

Step 2: The total surface area 

  

  

  

  

A — area of base SIS 4(area of one side) NORMAL FLOAT AUTO REAL RADIAN MP n 

=22 + 4y 

=% 4z (%) {using (1)} 

A(z) = 22 416000z~  where = >0 

Step 3: . Al(z) =2z — 1600022 

A'(x) =0 when 2z = 16980200 

22°® = 16 000 

2= v/8000 = 20 

Step 4: A"(z) =2+ 3200023 
Viomy o, 32000 

A"(20) =2+ 205 =6 

Since A”(20) > 0, there is a local minimum at 2 = 20. 

Step 5:  The minimum material is used to make the container 

  

  

when = =20 and y=@=10. 
202 

Step 6:  The most economical shape has a square base ) 

20 cm x 20 cm, and height 10 cm. 20 cm 

Use calculus techniques to answer the following problems. GRAPHING 
PACKAGE 

In cases where finding the zeros of the derivatives is difficult you may use the graphing 

package to help you. 

EXERCISE 14B 

1 When a manufacturer makes x items per day, the profit function is 

P(x) = —0.02222 + 11z — 720 pounds. Find the production level that will maximise profits. 

2 The total cost of producing = blankets per day is %172 + 8z + 20 pounds, and for this production 

level each blanket may be sold for (23 — %x) pounds. 

How many blankets should be produced per day to maximise the total profit?
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60 metres of fencing is used to build a rectangular 

enclosure along an existing fence. Suppose the i 

sides adjacent to the existing fence are x m long. 
existing 

fence 
a Show that the area A of the enclosure is given 

by A(z) = z(60 — 2z) m?. 

b Find the dimensions which maximise the area of the enclosure. 

A duck farmer wishes to build a rectangular enclosure of area 

100 m2. The farmer must purchase wire netting for three of 

the sides, as the fourth side is an existing fence. Naturally, the 

farmer wishes to minimise the length (and therefore cost) of 

fencing required to complete the job. 

a If the sides adjacent to the existing fence have length 

2+ m, show that the required length of wire netting to be 

purchased is L = 2x + @ 
xT 

  

b Find the minimum value of L and the corresponding value of = when this occurs. 

¢ Sketch the optimal situation, showing all dimensions. 

Radioactive waste is to be disposed of in fully enclosed 

lead boxes of inner volume 200 cm®. The base of a box 

has dimensions in the ratio 2: 1. 

a Show that z%h = 100. 

b Show that the inner surface area of the box is given by z cm 

A(z) = 42® + 800 o2, 
x 

¢ Find the minimum inner surface area of the box and the corresponding value of x. 

h cm 

  

d  Sketch the optimal box shape, showing all dimensions. 

Brenda is designing a cylindrical tin can for a canned fruit company. rem 

The cans must have capacity 1 litre, and they must use as little metal as e 

possible. o 

1000 
2 

  a Explain why the height & is given by h = cm. 
nr 

hecm 
b Show that the total surface area A is given by 

2000 o 
  A=2mr? 4 

T 

¢ Find the dimensions of the can which make A as small as possible. 

Sam has sheets of metal which are 36 cm by 36 cm square. 

He wants to cut out identical squares which are = cm by 2 cm 

from the corners of each sheet. He will then bend the sheets 

along the dashed lines to form an open container. 

a Show that the volume of the container is given by 

V(z) = 2(36 — 22)? cm®. 

b What sized squares should be cut out to produce the 

container of greatest capacity?   
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8 An athletics track has two “straights” of length I m, and two semi-circular 

ends of radius  m. The perimeter of the track is 400 m. 

a Show that [ = 200 — w2 and write down the possible values that = 

may have. 

b What values of [ and x maximise the shaded rectangle inside the track? 

What is this maximum area? 

  

9 A 60 cm length of wire is bent into a rectangle with length 2 cm and width y cm. 

Write an expression for y in terms of x. 

Write an expression for the area A(x) of the rectangle enclosed by the wire. 

Find A’ (x). 

Hence determine the value of x which maximises the area. What are the dimensions of the 

rectangle in this case? 

o
 

an 
O 

o 

Example 6 ) Self Tutor 

  

Infinitely many rectangles can be inscribed in a semi-circle of 

diameter 20 cm. 

Find the shape of the largest rectangle which can be inscribed. 

fe—20cm—— 

Step I: Let OB=2zcm, 0 <z <10 

  

In AOBC, BC?+ 2% =107 {Pythagoras} 

BC=+/100—2z2 {as BC >0} 

    
      

Step 2: The rectangle has area A = length x width 

A = 2x4/100 — z2 

A% = 422(100 — 2?) 

= 4002® — 42* 

Since A > 0, we can maximise 

A by maximising A2. This 
makes the calculations easier! 

Step 3: di(AZ) = 800z — 162 
T 

= 162(50 — 22) 

So, %(Az) =0 when z =0 or +v/50.   

Step 4: di(Az) has sign diagram: + 
X    
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Step 5:  The area is maximised when z = V50 and BC = /100 — 50 

=+/50 cm 

Step 6:  The largest rectangle which can be inscribed is ‘ 

2v/50 ¢cm long and v/50 cm wide. 

‘ /50 cm l 

F—Zficm—q 

  

10 [Infinitely many rectangles can be inscribed in a circle of diameter 

10 cm. In the diagram alongside, suppose ON = x cm. 

a Find the area of ABCD in terms of = only. 

b Find the dimensions of ABCD which maximises its area. 

  

11 A manufacturer of electric kettles performs a cost control study. They discover that to produce 

30—z 
  

2 
x kettles per day, the cost per kettle is given by C(z) = 4lnz + ( ) pounds with a 

minimum production capacity of 10 kettles per day. 

How many kettles should be manufactured to keep the cost per kettle to a minimum? 

12 Infinitely many rectangles which sit on the x-axis 
. . —2 

can be inscribed under the curve y =e™* 

Determine the coordinates of C such that 

rectangle ABCD has maximum area. 

    

13 A circular piece of tin-plate with radius 10 cm has 3 segments 

removed as illustrated. The angle 6 is measured in radians. 

10cm a Show that the remaining area is given by 

A =500+ 3sinf) cm?. 

b Find 0 such that the area A is a maximum, and find the 

area A in this case. 

14 A symmetrical gutter is made from a sheet of metal 30 cm end view 

wide by bending it twice as shown. 

a Deduce that the cross-sectional area of the gutter is given 

by A=100cosf(1 +sinf) cm?. 

b Show that % =0 when sinf =3 or —1. 

  

10cm 

¢ For what value of 6 does the gutter have maximum 

carrying capacity? Find the cross-sectional area for this 

value of 6.



358  APPLICATIONS OF DIFFERENTIATION (Chapter 14) 

15 When a new anaesthetic is administered, the effect is modelled by E(t) = 750te~!->* units, where 

t > 0 is the time in hours after the injection. 

a Find E'(t). 

b At what time is the anaesthetic most effective? 

16 A A pumphouse is to be placed at some point X along 

: a river. 

" B Two pipelines will then connect the pumphouse to 
m: 4 

homesteads A and B. 

How far should point X be from M so that the total 

length of pipeline is minimised? 

  

  

M X N 

river o 5 km—>l 

17 A small population of wasps is observed. After ¢ weeks the population is modelled by 

50000 
Pt) = ———M8M h <t <25, (t) T 1000005 wasps, where 0 <t <25 

Find when the wasp population is growing fastest. 

Hint: You need to maximise P’'(t). 

18 At 1:00 pm ship A leaves port P. It sails in the direction 

30° east of north at 12 kmh™!. At the same time, ship B is 

100 km due east of P, and is sailing at 8 kmh~! towards P. 

a Show that the distance between the two ships is given 

by D(t) = /30412 — 2800L + 10000 km, where 
t is the number of hours after 1:00 pm. 

  

b Find the minimum value of D? for all ¢ > 0. 

¢ At what time, to the nearest minute, are the ships 

closest? 

19 Hieu can row a boat at 3 kmh™!, and can walk at 6 kmh~'. He Q 
is currently at point P on the shore of a lake 2 km in radius. He 

will row to point Q, then walk around the shore to point R which 

is opposite P. 
p) R 

a Show that PQ = 4cosf km. 

b Show that the time taken for Hieu’s journey is given by 

T=%cos€+23—9 hours where 0 <6 < Z. 

¢ Find 0 such that 22 =0 on 0< 0<%, 
. . ar 

d Draw a sign diagram for R 

e What route should Hieu take to travel from P to R in: 

i the longest time i the shortest time?
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20 B s a boat 5 km out at sea from A. [AC] is a straight 6km 

sandy beach, 6 km long. Peter can row the boat Al zkm X C 

at 8 kmh~! and run along the beach at 17 kmh—1. 
Suppose Peter rows directly from B to point X on [AC] 

such that AX = z km. 

a Explain why 0 <z <6. 

  

b Show that the rotal time Peter takes to row to X 

and then run along the beach to C, is given by 

/22 12 _ 
T=xT+5+617x hours, 0 < z < 6. 

  

  B 

¢ Find x such that Z—T = 0. Explain the significance of this value. 
T 

21 A mosquito flying with position M(z, y, z) is repelled by scent emitted from the origin O. At 

time ¢ seconds, the coordinates of the mosquito are given by =(t) =3 — 2, y(t) = 2+ /1, and 

2(t) = 2 — V/t, where all distance units are metres. 

a Show that if the mosquito is D m from the origin at time ¢, then D? = t* — 6t% 4 2t + 17. 

b Hence find the closest the mosquito came to the source of the repellent. 

THEORY OF KNOWLEDGE 

Snell’s law states the relationship between the angles of incidence 

and refraction when a ray of light passes from one medium to 

another with different optical density. It was first discovered in 

984 AD by the Persian scientist Ibn Sahl, who was studying 

the shape of lenses. However, it is named after Willebrord 

Snellius, who rediscovered it during the Renaissance. The law 

was published by René Descartes in his Discourse on the Method 

published in 1637. 

    

In the figure alongside, a ray passes from A to B via point R. 

We suppose the refractive indices of the two media are n and 

m, the angle of incidence is a, and the angle of refraction is /3. 

Snell’s law states that: msina = msin 3. 

The law follows from Fermat’s principle of least time, which 

says that a ray of light travelling between two points will take 

the path of least time. 

1 Is optimisation a mathematical principle? 

2 [Is mathematics an intrinsic or natural part of other 

subjects? 
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ACTIVITY 

A spline is a function which uses several polynomials to draw a smooth curve through a set of data 

points. The spline can be used in modelling to interpolate values between the data. 

Consider a set of (n+ 1) data points (z;, y;) S(x) 

where zp < 21 < x3 < .... < z,,. The points (x1.91) 

do not have to be equally spaced. 

    
    

o) Cao) 

(0, 90) (z2,2) 
  

The cubic spline S(z) is a piecewise function of the form L —— 

Col), w0 <z <1 points (z;, y;) and (zi41, Yi+1)- 

  

S5(@) Ci(z), i <z < Tig1 

Cn—l(x)a Tp—1 < TS Ty 

  

  where Cj(z) = a;(@ — 2;) + b;(w — 2;)® + ¢;(v — 2;) + d; 
for i=0,..,n—1 

What to do: 

1 Discuss with your class what requirements we need to make sure that the cubic spline is smooth 

and continuous when it transitions from one cubic to the next. 

2 a Show that in the ith cubic: 

i C/(z) =3ai(x —2:)? +2b;(z — z;) + ¢ 

il C/(z)=6a;(x—x;)+2b; 

b Hence find C;(2;), C,/(x;), and C," (x;). 

3 The four pieces of information we will use for each cubic are: 

e the data point at the left end 

e the gradient at the left end 

o the curvature at the left end 

e the data point at the right end. 

This choice will allow us to calculate one cubic at a time. We will first determine Cp(z). 

We will then demand that, for i =1, ..., n — 1: 

o Ci(z;) = Ci—1(z) o C/(z) =CLy(:) o C'(z) =0 (1) 

Discuss what each of these requirements means, and how they give us the 3 pieces of information 

at the left end of the cubic.
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4 There are five data points on the graph alongside. 

a Consider the first cubic, Cy(z). 

We need to choose sensible values for C’ (z¢) 

  

  

and C{(z0), so we consider the quadratic (9’.16) 

through the first three data points. 

i Verify that the first three data points lie 

on the quadratic Q(z) = —2? + 8z +4. 

il By letting Cy’(z0) = Q"(z0), show 

that bo =—1. 

iii By letting Cj/(z0) = Q'(xo), show that 
Ccy = 8. 5 

iv By letting Cy(x0) = yo, find dp. 

v By letting 00(11) =1, find ag. 

If the first three points were collinear, 

we would instead set Cy’(zo) = 0 
and Cy/(zo) = gradient of the line 

through the points. 

  

b Having fully determined Cj(z), we now consider C (z). 

i By letting C/’(z1) = Cy’(21), find bs. Q/AQ 

il By letting C\/(x1) = Cy/(x1), find c;. & 

ili By letting Ci(z1) = Co(x1) = y1, find d;. 
V 

iv By 1etting Cl ($2) = Y2, find a;. 

¢ It would take a lot of time to calculate all of the coefficients by hand, and 

we run the risk of making errors, so it is useful to automate the process. 

Click on the icon to obtain a spreadsheet that fits a cubic spline to a set of 

data points. It is already loaded with the data from the graph. 

i Use the spreadsheet to find Cs(x) and C5(x). 

ii Discuss with your class how the formulae have been implemented in the spreadsheet. 

ili Plot the complete cubic spline y = S(z). Do you think the cubic spline is a good 

representation of the data? 

SPREADSHEET 

5 We will now look at how splines can help approximate the known function y = e®. 

a Enter the following data points into the spreadsheet: 

(0, 1), (2,7.39), (4,54.6), (6,403.4), (8,2981), (10, 22026). 

Hence complete the table alongside. | @ [ 1 [35[425[525[75] 9 | 

  

e | [ T 1 | 
ISi(@) 
  

b Comment on the difference between S(z) and e*. How well does S(x) approximate the 

function? 

¢ How could you improve the approximation? Test your hypothesis by using the spreadsheet. 

6 Experiment with cubic splines with data of your choice. 

a Discuss what they are good at and what they are poor at. 

b Is it always helpful to increase the number of data values?
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REVIEW SET 14A 

1 The height of a tree ¢ years after it was planted is given by H(t) = 60 + 401n(2¢ + 1) cm, 

t>0. 

a How tall was the tree when it was planted? 

b How long will it take for the tree to reach: 

i 150 cm ii 300 cm? 

¢ At what rate is the tree’s height increasing after: 

i 2 years ii 20 years? 

2 The value of a car ¢ years after its purchase is given by V = 20000e %4 pounds. Calculate: 

a the purchase price of the car 

b the rate at which the value of the car is decreasing 10 years after it was purchased. 

. . Lo v? 50000 
3 The cost per hour of running a freight train is given by C(v) = o0 S 

v 

  dollars where 

v is the average speed of the train in kmh~?. 

a Find the cost of running the train for 5 hours at 64 kmh~?!. 

b Find the rate of change in the hourly cost of running the train at speeds of: 

i 75kmh! il 90 kmh=!. 

¢ At what speed will the cost per hour be a minimum? 

Rectangle ABCD is inscribed within the parabola 

y=9— a2 and the z-axis, as shown. 

a If OD = z, show that the rectangle ABCD has 

area function A(z) = 18z — 22°. 

b Find the coordinates of C when rectangle ABCD 

has maximum area. 

  

5 A 200 m fence is placed around a lawn which has the shape of 

a rectangle with a semi-circle on one of its sides. 

a Using the dimensions shown on the figure, show that 

y =100 —x — Za. 

b Find the area of the lawn A in terms of x only. 

¢ Find the dimensions of the lawn of maximum area. 

6 A manufacturer of open steel boxes has to make one with a square 

base and a capacity of 1 KL. The steel costs £2 per square metre. 

a If the base measures  m by x m and the height is y m, find 

y in terms of x. 

  

b Hence show that the total cost of the steel is C(z) = 222 + g pounds. 
X 

¢ Find the dimensions of the steel box which would cost the least to make. 

7 Answer the Opening Problem on page 346.
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REVIEW SET 14B 

1 The cost in euros of producing x items in a factory each day is given by 

C(z) = 850 + 3.3z9-85 + 2.8205. 

a Find the marginal cost function C’(z). 

b Find C’(1000) and explain what this result estimates. 

¢ Find C(1001) — C(1000). Discuss your answer. 
= 

2 The size of a population at time ¢ years is given by P(t) = 60000 (1 4 267%) , t>0. 

a Find the initial population. 

Find P'(t). 
Show that P’(¢) >0 forall ¢> 0. Explain what this means. 

Find P (t). 

Find the maximum growth rate of the population, and the exact time when this occurs. 

- 
0 

O 
A 

O 

Discuss P(t) as t — oo. 

g Sketch the population function, showing the information you have found. 

3 Mark has set his compass so that both arms have length 

11 cm. The angle between the arms is 6. 

of 6. 

b Hence find the rate of change in A with respect to 6 
—x when 60 = %. A 

a Write the area A of the circle Mark will draw in terms 

A 1lcm 
1lcm 

& A rectangular gutter is formed by bending a 24 cm i end view 
wide sheet of metal as shown. 

Where must the bends be made in order to maximise 

the capacity of the gutter? fe——2dem——> 

The graph of y =ae™® for a >0 is shown. 

P is a moving point on the graph, and A and B lie 

on the axes as shown so that OAPB is a rectangle. 

Find the z-coordinate of P, in terms of a, such that 

the rectangle OAPB has minimum perimeter. 

A rectangular sheet of tin-plate is 20 cm by 10 cm. 

Four squares, each with sides x cm, are cut from 

its corners. The remainder is bent into the shape of 

an open rectangular container. Find the value of x 

which will maximise the capacity of the container.  
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A light bulb hangs from the ceiling at height 2 metres above the 

floor, directly above point N. At any point A on the floor which 

is « metres from the light bulb, the illumination I is given by 

/8 cosb 

o 

a If NA = 1 metre, show that at A, I = v/8cos0sin? . 

b The light bulb may be lifted or lowered to change the 

intensity at A. Assuming NA = 1 metre, find the height 

the bulb should be above the floor to provide the greatest 

illumination at A. 

1= units.   

  

    A light bulb 

ceiling



  

Introduction to 

integration 
Contents: A Approximating the area under 

a curve 

The Riemann integral 

Antidifferentiation 
The Fundamental Theorem of 

Calculus 

o
n
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w
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OPENING PROBLEM 

Another of Archimedes’ achievements was devising a method 

for calculating the area under a curve. 

In an article containing 24 propositions, he provided essential 

theory for what, over 1800 years later, would be developed 

into integral calculus. 

In the process, Archimedes found the exact area A between 

  

the curve y = 22 and the z-axis, on the interval 0 <z < 1. 

Things to think about: 

a Can you use the: 

i blue rectangle to explain why A > % ii red rectangles to explain why A < %? 

   
b How can we obtain a better estimate for A? 

¢ What function has z? as its derivative? 

In this Chapter we consider integral calculus. This involves antidifferentiation, which is the reverse 

process of differentiation. 

I3 VAPBROIMATING THE AREA UNDES A s 
2 Consider the function f(z) =2* in the Opening Problem. 

We wish to estimate the area A enclosed by y = f(z), 

z-axis, and the vertical line = = 1. 

Suppose we divide the interval 0 < = <1 into 4 strips of width 

i unit as shown. We obtain 4 subintervals of equal width. 

The diagram alongside shows lower rectangles, which are 

rectangles with height equal to the lower value of the function 

at the endpoints of the subinterval. 

The total area of the lower rectangles is 

AL =33 fO+1 xS+ 33 @)+ x 1) 
=107+ 33+ 1)+ 1D’ 
=0.21875 
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The next diagram shows upper rectangles, which are rectangles 

with height equal to the upper value of the function at the 

endpoints of the subinterval. 

The total area of the upper rectangles is 

AU=le(l)+%xf D+ ) +1x/0) 
=1@’+ 13+ 1D +3()° 
=0.46875 

]
       

  

s]
Y 

Clearly, for increasing functions such as f(z) = 2%, Ap < A < Ay, so the area A lies between 

0.218 75 units? and 0.468 75 units?. 

If the interval 0 < x 

ALzé[f +f( )+ FD+FE) + B+ @)+ G + )] 
      

  

  

  

  

8 [0 64 } 116 694 I i I 6?1 } 196 gi] 

~0.27344 

A =g [[@+ @D+ @+ @)+ @) +ID) + /() 
srmra+ritd+rarat 

~ 0.398 44 

< 1 was divided into 8 subintervals instead, each of width é, then 

From this refinement we conclude that the area A lies between 0.273 44 units? and 0.398 44 units?. 

As we create more subintervals, the estimates Ay, and Ay will become more and more accurate. In fact, 

as the subinterval width is reduced further and further, both A7, and Ay will converge to A. 

1 
Now suppose there are n subintervals between x =0 and z =1, each of width —. 

n 

You can use the area finder software or your graphics calculator to help calculate A;, and Ay for large 

values of n. 

AREA FINDER 

) 
Average 

  

GRAPHICS 
CALCULATOR 
INSTRUCTIONS 

The table alongside summarises the results you should 

obtain for n =4, 8, 16, 50, 200, 1000, and 10 000. 

From the table, it appears that both Ay and Ay are 

converging to % as n increases. 

0.21875 

0.27344 

0.30273 

0.32340 

0.33084 

0.33283 

0.33328 

0.468 75 

0.398 44 

0.365 23 

0.34340 

0.33584 

0.33383 

0.333 38 

0.34375 

0.33550 

0.33398 

0.33340 

0.33338 

0.33333 

0.33333 

  

  

EXERCISE 15A 

1 Consider the area between y = z and the z-axis from 

=0 to z=1. 

a Divide the interval into 5 subintervals of equal width, 

then estimate the area using: 

i lower rectangles il upper rectangles. 

b Calculate the actual area and compare it with your 

answers in a.  
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. 1 . .. . . 
2 Consider the area between y = — and the z-axis from = =2 to x = 4. Divide the interval into 

T 

6 subintervals of equal width, then estimate the area using: 

a lower rectangles b upper rectangles. 

3 Use rectangles to find lower and upper sums for the area between the graph of y = 22 AREA FINDER 

and the z-axis for 1 < o < 2. Use n = 10, 25, 50, 100, and 500. Give your 

answers to 4 decimal places. 

As n gets larger, both Ay, and Ay converge to the same rational number. What is it? 

L a Uselower and upper rectangle sums to estimate the area between each of the following functions 

and the z-axis for 0 <z < 1. Use n =5, 10, 50, 100, 500, 1000, and 10000. Give your 

answer to 5 decimal places in each case. . . 

iy=a3 i y==x il y=2a2 iv y=23 

b For each case in a, write down the value to which Ay, and Ay converge. 

¢ Using your answer to b, predict the area between the graph of y = 2® and the z-axis for 

0 <z <1 and any number a > 0. 

5 Consider the quarter circle with centre (0, 0) and radius 

2 units illustrated. 

Its area is 1 (full circle with radius 2 units) = 4 x 7 x 22 

= 7 units? 

a Estimate the area using lower and upper rectangles for 

n = 10, 50, 100, 200, 1000, and 10000. Hence find 

rational bounds for 7. 

  

b Archimedes found the famous approximation 342 < 7 < 31. 

For what value of n is your estimate for 7 better than that of Archimedes? 

INVESTIGATION 1 

For the curve f(z) = 22, we already have the tools necessary to calculate the area A between 

y = f(z) and the z-axis on the interval 0 <z <1 exactly. 

Suppose we divide the interval 0 <z < 1 into n subintervals, each of width l. 
n 

What to do: 
® B 

1 a Explain why the total area of lower rectangles can be written as Ay = L i (Z -1 ) 
n ;= 

  

  

  

i=1 n 

| n | I 

b Use the sum of series formulae ) i = n(n2‘ Y and a2 = w to show 
1 =1 i 

that AL*_7_+W 

¢ What value does Ay, approach as n — oo? 
n . 

2 a Explain why the total area of upper rectangles can be written as Ay = L f (i) 
n =" \n 

b Hence show that Ay = + Pl e 
6n2 

¢ What value does Ay approach as n — o0o? 

3 Use the results from 1 and 2 to explain why A = % units?.
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We have seen that for the special case of a quadratic, we can use series formulae to evaluate the area 

under the curve exactly. 

However, for most functions we do not have such formulae. We therefore need a more general method 

for finding the area under a curve. 

HISTORICAL NOTE 

Italian Mathematician Bonaventura Cavalieri (1598 - 1647) became 

Professor of Mathematics at Bologna in 1629. He published tables 

for many trigonometric and logarithmic functions. However, his best 

known contribution to mathematics was the invention of indivisibles. 

In his Method of Indivisibles, Cavalieri considered that a moving 

point could be used to sketch a curve. The curve could therefore be 
considered as the set of an infinite number of points, each with no 

length. 

In a similar way, the “indivisibles” that made up a surface were 

an infinite number of lines. Almost every introduction to integral 

calculus starts with the division of an area into a number of 

rectangular strips with finite width. 

  

Bonaventura Cavalieri 

Cavalieri’s important step was to make the strips narrower and narrower until they were infinitely 

thin lines. This reduces the “jagged” steps of the strips until they exactly define the curved boundary 

of the area. 

  

It was not until Englishman Sir John Wallis (1616 - 1703) formally introduced the idea of a limit 

in 1656 that Cavalieri’s Method of Indivisibles progressed into the foundation for Integral Calculus. 

Consider the lower and upper rectangle sums for a function which is positive and increasing on the 

interval a < x <b. 

  

b—a 
— We divide the interval into n subintervals, each of width w = 

Yy y=f(x) y 

  

                  - > - T > 
T a T1T223 xn,21 b x 

4 1 
Zo Tn—1 Tn
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Since the function is increasing: 

Ap = w f(20) +w (1) oo 10 f(2n2) + 0 f(2a) = 2 f) 

          Ap =0 J (@) 0 52) ot feas) +0 S (o) =3 S 
.. AU — AL = ’w(f(zn) - f(a:U)) 

= 2(b—a) () - f(a)) 

Following Cavalieri’s suggestion, we allow there to be infinitely many subintervals, so n — oc. 

1 
In this case  lim (Ay —AL) =0 {since lim — =0} 

n—oo n—oo N 

lim Ay, = lim Ay  {provided both limits exist} 
n— o0 n—oo 

    since A; < A < Ay for all values of n, it follows that 

n— o0 n—oo 

     

      
lim means we 
n—oo 

have infinitely 

many subintervals. 

We can obtain a result like this for every increasing and decreasing interval of a positive function provided 

the function is continuous. This means that the function must have a defined value f(k) forall a < k < b, 

and that lim f(z) = f(k) forall a <k <b. 
z—k 

The symbol / 

If f(z)>0 forall a<<xz<b, then 
is called an b 

/ f(z)dz is defined as the shaded area A. integral sign. 

  

This is known as the Riemann integral. 

We would say “the integral of f(z) from 
a to b with respect to z”. 

  

HISTORICAL NOTE   

  

The word integration means “fo put together into a whole”. An 

integral is the “whole” produced from integration, since the areas 

of the thin rectangular strips are put together into one whole area. 

The theory of integration was developed independently by 

Sir Isaac Newton and Gottfried Wilhelm Leibniz. 

It was rigorously formalised using limits by the German 

mathematician Bernhard Riemann (1826 - 1866), whose name 

is given to the integral which calculates the area under a curve. 

  

Bernhard Riemann
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Example [ '1>)) Self Tutor 

1 

a Sketch the graph of y = 2* for 0 <z < 1. Shade the area described by / x4 dz. 
0 

  

b Use technology to calculate the lower and upper rectangle sums for n equal subintervals where 

n =5, 10, 50, 100, and 500. 
1 

¢ Hence evaluate / z* dz to 2 significant figures. 
0 
  

02 04 06 08 1 

  

¢ When n =500, Ay ~ Ay =~ 0.20, to 2 significant figures. 

1 1 
since Aj < / zt dx < Ay, / zt dx ~0.20 

0 0     
  

EXERCISE 15B . 

1 a Sketch the graph of y =/ for 0 <z < 1. Shade the area described by / Vz da. 
0 

b Find the lower and upper rectangle sums for n = 5, 10, 50, 100, and 500. AREA FINDER 

1 
¢ Hence evaluate / Vx dr to 2 significant figures. 

0 

2 Consider the region enclosed by y = +/1+ a? and the z-axis for 0 < z < 2. GRAPHING 

a Write expressions for the lower and upper rectangle sums using n subintervals 

where n € Z*. 

b Find the lower and upper rectangle sums for n = 50, 100, and 500. 
2 

¢ Hence estimate V1+ a3 de. 
0 

2 3 
3 The integral / e dz is of considerable interest to statisticians. 

-3 5 
_x 

2 

_z 
2 

< 3. a Use the graphing package to help sketch y =e¢ T 

<z <3 using n = 2250. 

for -3 < 

0 b Calculate the lower and upper rectangle sums for the interval 
22 

¢ Use the symmetry of y =e 2 to find lower and upper rectangle sums for —3 <z <0 for 

n = 2250. 5 
€Z 

d Hence estimate / e 2 
-3 

2 

dx. Compare your answer with v/27.
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Example 2 ») Self Tutor 

  

Use graphical evidence and known area facts to find: 

2 1 
a /(Zerl)dx b / V1—22dz 

0 0 
  

2 
/ (2¢ + 1) dz = shaded area 

0 
_ <1+5> %9 

2 

=6 

  

b If y=+1—22 then y?> =1—22 andso x?+y? = 1. This is the equation 

of the unit circle, and y = /1 — 22 is the upper half. 

y 1 

/ v/ 1 — 22 dx = shaded area 
y=+v1—a2 0      

  

  
  

& Use graphical evidence and known area facts to find: 

3 2 2 
a /(1+4w)d;r b / (2—a)dx < / V4 —2?de 

1 J-1 —2 

5 a Use the diagram alongside to show that for any 

positive function f(z): 

  

5 9 
b For a positive function f(x), / f(z) =10, and / f(z) = 12. Find: 

2 
5 9 

i /5f(:E)dZL’ il /Qf(x)dx 

FARNIINT ANTIDIFFERENTIATION 
In many problems in calculus, we know the rate of change of one variable with respect to another, but 

. . . d; 
we do not have a formula which directly relates the variables. In other words, we know Y but we 

dx’ 

- 

need to know y in terms of x.
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The process of finding y from Z—y, or f(z) from f’(z), is the reverse process of 
T 

differentiation. We call it antidifferentiation. 

differentiation 

/ \ 

y or f(x) L oor f(z) 

\ antidifferentiation — 

Consider % — 42, 
dx 

From our work on differentiation, we know that when we differentiate power functions the index reduces 

by 1. We hence know that y must involve . 

Now if y = 2% then W _ 327, so if we start with y = $2% then W _ g2 
- dz © dz 

This is the correct result. However, for all of the cases y = 32 +2, y = 32°+100, and y = %13 -7, 

we find that % — 22, 
dz 

In fact, there are infinitely many functions of the form y = %13 + ¢ where c is an arbitrary constant, 

. . . d . . 
which will give L g2 Ignoring the arbitrary constant, we say that %L 

dx 

of 2. It is the simplest function which, when differentiated, gives . 

3 is the antiderivative 

If F(z) is a function where F'(z) = f(x) we say that: 

o the derivative of F(z) is f(z) and 

o the antiderivative of f(z) is F(z). 

  

ECITE 

  

Find the antiderivative of: 
1 

a 28 b ¢« — 
VT 

a i(104):4203 < L :af% 
dx VT 

d 14 — 3 1 1 
d{l:(4x)7x Now di(xz):%x_2 

X 

the antiderivative of 2% is iz 4 \ . 
. 3)— 9(1) "3 — 3 

b i(€2$):62m><2:262m o %(2:82)72(2)1 e 
dx . N 1 

i(leh 1 y9p2 _ 2 the antiderivative of —= i 2,/x. 
dx 2 2 

the antiderivative of €** is 1e%®     
 



374  INTRODUCTION TO INTEGRATION (Chapter 15) 

EXERCISE 15C 

1 a Find the antiderivative of: 

iz i 22 ili 2° iv z72 

@l
e | 1 

@
l
 

v g4 vi x vii z 3 vili = 

b Predict a general rule for the antiderivative of z™, for n # —1. 

2 a Find the antiderivative of: 
1 x 

ie i e i e2” iv 001 v e vi e3 
b Predict a general rule for the antiderivative of €** where k # 0 is a constant. 

3 Find the antiderivative of: 

a 6z%+4x by first differentiating 2% + 2% b /z by first differentiating /7 

1 . . 1 
< e by first differentiating 7 

(211 [ THE FUNDAMENTAL THEOREM OF CALCULUS 
We can now use the Riemann integral to explain the link between differential calculus and the definite 

integral or limit of an area sum we saw in Section B. This link is called the Fundamental Theorem of 

Calculus. 

INVESTIGATION 2 

Consider the constant function f(t) = 5. 

We wish to find an area function which will give the area 

under the function between ¢ = a and some other value of ¢ 

which we will call z. 

The area function is A(z) = / 5 dt 

= shaded area 

=(z—a)5 

=5z — 5a 

Since f(t) =5 has the antiderivative F(t) = 5¢, we can write A(x) in the form F'(z) — F(a). 

What to do: 

1 What is the derivative F’(t) of the function F(t) = 5t? How is this related to f(¢)? 

  

2 Consider the simplest linear function f(t) = t. Y y= 

The corresponding area function is 

Az) = / tdt b 

= shaded area ia : 

- (£ 
a Write A(z) in the form F(z) — F(a). 

b What is the derivative F’(¢)? How is this related to f(£)? 
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3 Consider f(t) =2t+ 3. The corresponding area function is 

Az) = / (2t +3)dt 

= shaded area 

2r+3+2a+3 (e, 
a Write A(z) in the form F(z) — F(a). 

b What is the derivative F’(t)? 

How is this related to f(t)? 

  

4 Repeat the procedure in 2 and 3 to find area functions for: 

a f(t)=3t+3 b f(t)=5-2t 

Do your results fit with your earlier observations? 

5 If f(t) =3t>+4t+5, predict what F(¢) will be without performing the algebraic procedure. 

From the Investigation you should have found that, for f(t) >0, 

/:r f(t)dt = F(z) — F(a) where F'(t)= f(t). F(t) is the antiderivative of f(¢). 

The following argument shows why this is true for all functions f(¢) > 0. 

Consider a function y = f(t) which has antiderivative 

F(t) and an area function A(z) = /z f(t)dt which 

is the area from t=a to t=a2. 

A(x) is an increasing function since f(z) > 0, and 

Ala) =0 .. (1) 

Consider the narrow strip between ¢t = and ¢t = z+h. 

The area of this strip is A(x +h) — A(x), but we also 

know it must lie between a lower and upper rectangle 

on the interval x <t < x+ h of width h. 

area of lower <A@ +h)— A@@) < area of upper 

rectangle rectangle 

If f(t) is increasing on this interval then 

hf(z) < A(x+h) — A(x) < hf(z+h) 

fl@) < w < fl@+h) 
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Equivalently, if f(¢) is decreasing on this interval then 

fla+h) < AEN ZAD) o pg 

Taking the limitas h — 0 gives 

flx) <A'(z) < flx) 
L A(x) = f(x) 

So, the area function A(z) must only differ from the 

antiderivative of f(x) by a constant. 

A(z)=F(z) +c 

Letting  =a, A(a)=F(a)+c 

But from (1), A(a)=0 .. c¢=—F(a) 

=F(z) — F(a) 

and so /dL f(t)dt = F(z) — F(a) 

b 
Letting = =10, / f(t)dt = F(b) — F(a) 

  

e——h—> 

x 

    
x+h 

enlarged strip 

This result is in fact true for a// continuous functions f(¢), even if they are negative. 

y=f(t) 

+h) 

  
However, in situations where a function is negative, the area between the curve and the z-axis is counted 

as negative. We therefore refer to A(x) as a signed area function. 

THE FUNDAMENTAL THEOREM OF CALCULUS 

b 
For a continuous function f(x) with antiderivative F (), / f(z) de = F(b) — F(a). 

a 

b 
In general, / f(x)dx is called a definite integral. 

a 

PROPERTIES OF DEFINITE INTEGRALS 

The following properties of definite integrals can all be deduced from the Fundamental Theorem of 

Calculus: 

a b 

. /f(x)dx=0 . /kdx=k(b—a) {k is a constant} 

. /af(x)dx=—/bf(x)dx 

. /f(a:)dz—i—/f da:—/f(z)da: 

    . / (@) % 9(a)] do = / f@)do+ / o(2) dz 

. /abkf(z)dx=k/:f(z)dz



Example proof: 

  

The Fundamental Theorem of Calculus allows us to calculate areas under curves that we could previously 

only estimate. 

L «) Self Tutor 

Use the Fundamental Theorem of Calculus to find the area between: 

the z-axis and y =22 from =0 to z =1 

the z-axis and y = /z from z=1 to =09. 

B . . .’Es 
f(z) =2? has antiderivative F(z) = = 

1 
-, shaded area = / 22 dx 

0 

=F(1) - F(0) 
_ 1 =1-0 

1 pite2 = 3 units 

has antiderivative 

2 
1 9 

-, shaded area = / 22 dx 
1 

=F(9) - F(1) 
=%x21-2x1 

=174 units®  
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Instructions for evaluating definite integrals on 

your calculator can be found by clicking on the 

icon. 

) 

GRAPHICS 
CALCULATOR 
INSTRUCTIONS 

EXERCISE 15D 

1 a Differentiate 22, and hence find the antiderivative of 2z. 

b Use the Fundamental Theorem of Calculus to find the area 

between the z-axis and f(z) =22 from 2 =1 to = =3. 

¢ Use graphical methods to check your answer. 

2 a Find the antiderivative of /. 

b Use the Fundamental Theorem of Calculus to find the area 

from =0 to z=1. 

¢ Compare your answer to Exercise 15B question 1. 

3 a 

from: 

i 2=0to =2 i 2=2to =3 

b Comment on your answers in a. 

L Use the Fundamental Theorem of Calculus to find the 

area between the z-axis and: 

a y=2° from =1 to z= 

b y=22> from z2=1 to z 

¢ y=+/z from z=1to x=2 

d y=L from x=1 to =4 
VT 

5 Use the Fundamental Theorem of Calculus to show that: 

/ f(z)dx =0 and explain the result graphically 
a 

b 
b / kdx = k(b — a) where k is a constant 

b 
/ kf(z)de = / f(z)dx where k is a constant 

/[f +g(z dxf/f dx+/ g(z)dz 

Use the Fundamental Theorem of Calculus to find the area between the z-axis and y = «x 

B HatiDedlorn] (dTcIRes 

I:de 

O 
17.33333333] 

    

  

  

  

  

  

  

  

  

  

                  

  

      

between the z-axis and y = \/z 

3 

il 2=0 to z=3. 

Check your answers 

using technology. 
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6 Use technology to find the area between the z-axis and 

y=+vV9—22 from =0 to x=3. 

Check your answer by direct calculation of the area. 

  

7 a Use the Fundamental Theorem of Calculus to show that 

/ ") / @) do 
b Hence show that if f(z) <0 forallzon a<z <b 

  

then the shaded area = — / f(x)dr units?. 

¢ Calculate the following integrals, and give graphical interpretations of your answers: 

/01(—x2)dz ii /01(12 —z)de i /j2 32 do 

2 
d Use graphical evidence and known area facts to find / <7\/4 - wz) dx. 

Jo 

REVIEW SET 15A 

1 a Use four lower and upper rectangles to find rational 

numbers A and B such that: 
2 

A</ (4 —2?)dx < B. 
0 

2 
b Hence estimate / (4 — 2%) dx. 

0 

  

2 a Sketch the region between y =sinz and the x-axis for 0 <2 < 5. 

b Divide the interval into 3 equal parts and display the 3 upper and 3 lower rectangles. Hence 
s 

find boundaries for the value of / : sin x dzx. 
0 

3 Find the antiderivative of: 

  

  

1 

a 2! b L ¢ e 2" d cosz 
2z2 

4 The graph of y = f(x) is illustrated. Ay ! é 
| . i i semi-circl 

Evaluate the following using area interpretation: / v [(2) 
    

  /U4f(z)dx b /46f(x)dx </—\ 
  

8]
y 
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5 a Use the Fundamental Theorem of Calculus to find the area between the z-axis and y = 22 

from: 

i z=0to z=1 ii z=1to z=2 iii =0 to z=2. 

b Comment on your answers in a. 

  REVIEW SET 15B 

4 

14 22 

Divide the interval into 5 equal parts and display the 5 upper and lower rectangles. 

1 a Sketch the region between the curve y = and the z-axis for 0 <z < 1.   

b Use the area finder software to find the lower and upper rectangle sums for  area FINDER 

n =5, 50, 100, and 500. 

4 

+z 
  dz and compare this answer with 7. 

1 
¢ Give your best estimate for / o2 

0 

2 Use graphical evidence and known area facts to find: 

4 1 
a /(Qxfl)dx b / V1-—2z2dz 

2 =i 

3 Find the antiderivative of: 

a 322 —2 by first differentiating 2° — 2z 
4 

b Yz by first differentiating z3. 

  

  

  

  

  

  

  

& The graph of y = f(z) is illustrated. Ay 

Evaluate the following using area interpretation: y=f(x) 

2 6 2 
a / f(z)dx b / f(z)dx 

0 2 e » 
4 4 Z 

v 
                            

5 Use the Fundamental Theorem of Calculus to find the area between the x-axis and: 

a y=4z from =0 to z=3 b y=x from 2=0 to z=9.



  

Techniques for 

integration 
Contents: Discovering integrals 

Rules for integration 

Particular values 
Integrating f (az + b) 

Integration by substitution m
o
n
w
)
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OPENING PROBLEM 

The Fundamental Theorem of Calculus developed by Newton and Leibniz identifies the link between 

differential calculus and a definite integral. 

If we are to use the Fundamental Theorem of Calculus to calculate areas, we need to be able to 

identify an area function from its derivative. 

Things to think about: 

a Can you identify the function which has derivative: 

i 322 il —-2+1 il cos2x? 

b What can the rules of differentiation teach us about the reverse process of integration? 

In our previous study of the Fundamental Theorem of Calculus, we showed that the antiderivative of 

2% is 22° and that any function of the form 123 4+ ¢ where c is a constant, has derivative 22. 

We say that the indefinite integral or integral of 22 is %zs + ¢, and write / 22 dr = %13 +c. 

We read this as “the integral of 2 with respect to z is %1’3 + ¢, where c is a constant”. 

If F'(z)= f(x) then /f(x) dx = F(z) +c. 

The constant ¢ is called the constant of integration. 

This process of finding an indefinite integral is called indefinite integration. 

NI DISCOVERING INTEGRALS 
Just as we did in antidifferentiation, we can sometimes discover integrals by differentiation. 

The following rules will prove useful: 

e Any constant within the integral may be written in front of the integral sign. 

/kf(z) dx = k/f(x) dx, k is a constant 

Proof: Consider differentiating kF(x) where F'(z) = f(z). 

2 (kF@) = kF'(@) = k f(2) 
/kf(a:)dz:kF(z)+c 

=k /f(:v)dz 

e The integral of a sum is the sum of the separate integrals. This rule enables us to integrate term by 

term. 

Jir@+s@)ds = [ rda+ [ ofa)ao
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e o) Self Tutor 

Find the derivative of z* +2x%, and hence find / (223 + 32?%) da. 
c represents an arbitrary 

constant, so is simply 

any valuec € R . 

  

i(aA +223) = 42% 4 622 
dz Instead of writing §, 

we can therefore still 

write just c. 
  

  /(41:3 62%) dx = 2* +22% + ¢ 

  

  

  /2(2£E3 3z dr =2* + 223 + ¢ 

  

    2/(2£E3 3z)dr =2t + 223 + ¢ 

  /(2x3 +32%)de = 12 +2% + ¢ 

  

  
EXERCISE 16A 

1 a Find the derivative of 27, and hence find / 28 dx 
‘We can check that an 

integral is correct by 3 

differentiating the answer. b Find the derivative of 22, and hence find / Vv dr. 

It should give us the 

, and hence find / 2 dr. integrand, the function we 
originally integrated. 

1 3 

¢ Find the derivative of z 2 

  

d  Find the derivative of 2"+, n # —1. Hence find / " dzx, 

n# —1. 

2 a Find the derivative of e**, and hence find / e da. 

wl
s 

b Find the derivative of e 2, and hence find / e 3(12. 

¢ Find the derivative of e**, k # 0. Hence find /e’” dx, k#0. 

3 a Find the derivative of sinx, and hence find /coswdz. 

b Find the derivative of cosx, and hence find /sinwdz. 

4 Find the derivative of 23 + 2%, and hence find /(312 + 2z) dx. 

5 Find the derivative of 3z* — 222, and hence find / (823 — z) dx. 

6 Suppose F(z) and G(x) have the derivative functions f(z) and g(z) respectively. 

a Find the derivative of F(z)+ G(x). 

b Show that /[f(z)+g(z)] dz:/f(x) dz+/g(x) dz.
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Example P '1>)) Self Tutor 

Find the derivative of cos (Qx + %), and hence find /sin (295 + %) dx. 

  

i(cos(?z +2)) =—sin(2z+3)(2) 
dx 

= —2sin(2z + %) 

/ (—2sin(2z+ Z))dz =cos(2z + Z) + ¢ 

72/sin(2x + Z )dm = cos(Qx + %) +c 

/sin (2x 4 

7 a Find the derivative of sin3z, and hence find / cos 3x dx. 

    wl
y 

  wl
y )dx: 7;cos(21+§) +ec       

b Find the derivative of cos(% — ), and hence find / sin(3 — z) dz. 

¢ Find the derivative of e3**!, and hence find / 3T . 

1 

Vor —1 

e Find the derivative of (2z + 1), and hence find /(Zz +1)* da. 

dx.   d Find the derivative of /52 — 1, and hence find / 

8 a Find the derivative of lnz, z > 0. b Find the derivative of In(—z), x < 0. 

¢ Hence explain why /ldz=1n|I\+c, x #0. 
x 

[NMUNT RULES FOR INTEGRATION 
In Chapter 12 we developed a set of rules to help us differentiate functions more efficiently. These rules 

or combinations of them can be used to differentiate all of the functions we consider in this course. 

However, the task of finding antiderivatives is not so easy. Many functions simply do not have 

antiderivatives which can be expressed easily using standard functions. 

HISTORICAL NOTE 

Robert Henry Risch (1939 - ) is an American mathematician. He studied at the University of 

California, Berkeley. 

In his doctorate studies in 1968, Risch devised a method for deciding if a function has an elementary 

antiderivative, and if it does, finding it. The original summary of his method took over 100 pages. 

Later developments from this are now used in all computer algebra systems. 

After completing his doctorate, he worked at the IBM Thomas Watson Research Centre.
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We can construct some rules which will allow us to integrate most of the function types we consider in 

this course. 

INTEGRATING BASIC FUNCTION TYPES 

    
  

For k a constant, di(kr +eo)=k /k dr = kx + ¢ 
xXr 

n+1 n gnt1 
If n 1, d<x Ic)—(n+l)x =" /m"dm: +ec n#—1 

dz\n+1 n+1 n+1 

d x i —(e"4¢) =e" /e der=¢" + ¢ 
dx 

-1 _1 | 2 | is the absolute value of z, 
-z =z which was studied in Chapter 3. 

1 Inz+c¢ if >0 
—dr = . 
T In(—z)+c if 2<0 

/%dm:1n|m|+c, z#0 

  

d, . . 
d—(smx+c)zcosx /cos:z:d:v:sm:v—l—c 

X 

d . 5 
d—(—cosz+c)=31nz sinzdx = —cosz + ¢ 

T 

i 
", n# -1 xnfl—&-c 

’ n+1 

c is an arbitrary constant called 

the constant of integration or 

integrating constant. 

  

0 Injz|+ec z#0 
x 

cosx sinz + ¢ 

  

  

sin x —cosx +c¢ 
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GENERAL RULES FOR INTEGRATION 

These rules can be combined with the results we saw in the previous Section: 

e Any constant within the integral may be written in front of the integral sign. 

/kf(x) dx = k/f(z) dz, Fk is a constant 

e The integral of a sum is the sum of the separate integrals. This rule enables us to integrate term by 

term. 

Jir@)+s@Nds = [ f@)da+ [ ota)ao 

Example 3 .1;)) Self Tutor 

  

  
  

Find: 

a (—22° + 57 — 2) dz b 5@’”—5—i dx < (2sinz — cosz) dx /z 

a /(—213+5x—2)d1: b /(55’”—5—%) dx < /(QSinx—cosz)dx 
x 

—oxt 2 q 
= Tt ”5%72x+c :/(5ez+2x7%)dx =2(—cosz) —sinz + ¢ 

= —2cosz —sinz +c¢ 
=—%x4——%zz—2x+c 1 

2z 2 
=5e"+——+c 

2 

=5e"+4y/z +c         
There are no power or quotient rules for integration, so we often have to perform the multiplication or 

division first and then integrate. 

Y «) Self Tutor 
  

  

  

2 3 _1 
/(1313202( l>+3x< l) +( l) )dx =/(3z 2 4 g)dx 

T T x 

{binomial theorem} 31% 22 
I 

=/(zs—3x+3z_1 —a %) dz 2 

  

4 2 — 
=%—3%+3ln|x|— 

X 

(=2) 

_ 1,4 3.2 1 et +31n|z\+fi+c 

  aF @     
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EXERCISE 16B 

1 Find: 

a /(12+3w72)dw 

< /(—z3+4x2—3)dx 

e /(x4fx27x+2)dx 

g /(2\/_—%> dx 

i /(x\/;?79)dx 

2 Find: 

a /‘(261—3I)d92 

3 Integrate with respect to x: 

a 3sinx —2 

d 22,/z — 10sinx 

  

4 Find y if: 

dy 
a %—6 

dy _ 2 d =" 

dy 71 

S &3 
5 Find: 

1 

a /(%13—r4+rg>dz 

6 Find: 

a /(2z+1)2dz 

2 — 1 
d / 7 dx 

  

7 Find f(z) if: 

2 f(a)= (12072 

  

  

4x —2cosx 

2@-1) +cosx 
3 

d_y = 4a2 
dz 

W93 4 
dz 

dy — =sinz + 2cosx 
dx 

Remember that you can 

check your integration by 

differentiating the 

resulting function. 

c / (5¢% + 122 de 

¢ sinx —2cosx+€e” 

f —sinz+ 2y 

cdy_ 1 
dz 22 

f d—=4z3+312 
dz 

i d—y:2€* S5+x 
dx 
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8 Find: 

a /(\/E+%COSZ)dI’ b /(26174sinx)dx < /(SCoszfsinx)dx 

9 Find: 

2 1 2 22 — 4z +2 e 
a /(z x) dx b — dx c /\/E(Sx 1)? dz 

DISCUSSION 

zntl . 
In the rule /z"dx: e +¢, n# —1, why did we exclude the value n = —1? 

n 

[N PARTICULAR VALUES 
We can find the constant of integration c if we are given a particular value of the function. 

|_Example 5| ) Self Tutor 
Find f(z) given that: 

a fl(z)=2%-22>+3 and f(0)=2 

  

b f/(z) =2sinz —+/r and f(0)=4. 

  

a fl(z)=2%-22"+3 b f/(z) =2sinz — z 

f(x)=/(a:3—212+3)dz f(a:)=/(251nz—15)dz 

4 9.3 2 
. f(z):%—%—&-?w——c f(a:):Q(—cosz)—?+c 

But f(0)=2, so c= j 
4 3 . = — — 222 R )= 2 

But f(0)=4, so —2cos0—0+c=4 

. c=6 

3 

Thus f(z) = —2cosz — 227 +6.     
EXERCISE 16C 

1 Find f(z) given that: 

a fl(z)=2zx—1 and f(0)=3 b fl(z)=322+22 and f(2)=5 

2 c f’(z):2+% and f(1)=1 d J@)=r—— and f(1)=2 

e f(x)=+yT—2 and f(4)=0 f f’(z):é and f(e) = 2. 

dy 2 —22% and passes through (2, 4). Find the equation of the 2 A curve has gradient function e 
T 

curve.
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A curve has gradient function Z—y =1—¢” and passes through (3, ¢?). Find the equation of the 
X 

curve. 

Find f(z) given that: 

a f'(z)=2%—4cosz and f(0)=3 b f/(z)=2cosz —3sinz and f(%) = % 

¢ f'(z)=+x—2sinz and f(0)=-2 d f'(z)=¢*+3cosz and f(m)=0. 

A curve has gradient function f’(x) = ax+1 where a is a constant. Find f(x) given that f(0) =3 

and f(3) =-3. 

A curve has gradient function f’(x) = ax® +bx where a, b are constants. Find f(z) given that 

f(=1)=—-2, f(0)=1, and f(1)=4. 

  

Example 6 LR AT 

Find f(x) given that f”(x) = 1222 —4, f'(0)=—1, and f(1) =4. 

If f(z) =1222 -4 

AN A(E /(1212 —4)dz 

1223 
=Tx—4z+c 

=42% — 4z +c 

But f'(0)=—-1, so c=—1 

Thus f/(z) = 42® — 4o — 1 

s f@) = /(41:3 — 4z —1)dx 

40t 4a? 
=—_———z+d 

4 2 * 

=zt — 222 —z+d 

But f(1)=4, so 1-2—1+d=4 andhence d=06 

Thus f(z)=2* 22> —2+6   

  

7 Find f(z) given that: 

a f'(a)=20c+1, f/(1)=3, and f(2)=7 

b f(z)= 15T + % £/(1) =12, and f(0)=5 

¢ f'(z)=cosz, f(%)=0, and f(0)=3 

d f"(z) =2z and the points (1,0) and (0, 5) lie on the curve y = f(x). 

8 Suppose f’(z)=3e"", f(1)= g, and f(3) = e% —2. Find f(2).
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DI MTEGRATING (0 + 1 
In this Section we deal with integrals of functions which are composite with the linear function ax + b. 

Notice that di( az H') — qearth 
XL 

1 
/e“‘”"’b dr==e"t" L ¢ for a # 0. 

a 

      Likewise if n # —1, dd ((az +b)"™1) = (n+ 1)(az +b)" x a 
Zr 

=a(n+1)(ax+b)" 

(ax + b)"t1 
ntD) +c for n# —1, a#0. /(a:):—i—b)"d:t:l 

a 

We can perform the same process for trigonometric functions: 

di(sin(ax +b)) = acos(ax +b) 
T 

1 
So, /cos(azz: + b) de = —sin(az + b) + ¢ for a # 0. 

a 

1 
Likewise we can show that /sin(azz: + b) de = —— cos(axz + b) + ¢ for a#O0. 

a 

  

. d (1 L) 1/ a \_ 1 
Finally, dz<zln(az‘b)> a<az+b) =T for ax+b>0, a#0 

  / ! d:v:lln(ax+b)+c for az+b>0, a#0 
ar+b a 

1 

ar+b 
  We can similarly show that / de =1 In(—(az +0b))+c for ar+b<0, a#0 

a 

    

1 1 
/ dz=—In|az+ b|+ ¢ for a#0. 

a ar+ b 

For a, b constants with a # 0, we have: Integml 

a:t+b +c 

a 

(az + b)" L 

n+1 

  

aic (az +b)", n#—1 % 
  

cos(ax +b) lsmaaerb)Jrc 

1 

_ _lnlax+b‘+c 
ax +b a  



Example 7 o) Self Tutor 

  

  

EXERCISE 16D 

Find: 

1 4 
/(2w+5)3dx /mdr /mdx 

  

  

  

/(4z—3)7dx /\/?fldz \/113—5zdz 

'/3(17;L')4dx /\/:imdx /fidw 

Find y = f(z) given % =22 —7 and that f(8)=11. 

The function f(x) has gradient function f/(z) = \/f__z, and the curve y = f(z) passes through 

the point (-3, —11). 

Find the point on the graph of y = f(x) with z-coordinate —8. 

Find: 

/3(2z —1)%dx /(4z —5)%dx /(1 — 3z)% dx 

/(2 —52)% dw /4\/5 —xdx /(71 + 1)t de 

Find an expression for y given that dy _ - and that the curve passes through (2, 0).   

dx (1—z)2 

Example 8 ) Self Tutor 

Integrate with respect to x: 

2sin 3z + cos(4x + ) 

  

/(262"” —e %) dx /(2 sin 3z + cos(4x + 7)) dx 

=2(1)e® — (L)e @ +¢ =2x —3cos3z + §sin(dz +m) +c¢ 

Le=3w 4 =—2cos3z + sin(dz +m) +c 
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6 Integrate with respect to : 

a sin3z b 2cos(—4xz)+1 € 3cos % 

d 3sin2x —e™ " e 2 sin(2z + %) f -3 cos(% - z) 

g cos2z +sin2z h 2sin3x + 5cosdx i Lcos8r—3sinx 2 

7 Find: 

a /(26’” +5e*) da b /(36"’” ) < / =32 dye 

2 2 

d /(ez +e %) da e / e " +2)da f / (=57 

8 Find an expression for y given that % = (1 —e*)?, and that the graph has y-intercept 4. 
X 

9 Suppose f'(x) = psing where p is a constant. f(0) =1 and f(27) = 0. Find p and hence 

f(@). 

10 Consider a function g such that ¢”(z) = —sin2x. 

Show that the gradients of the tangents to y = g(x) when z =m and 2 = —7 are equal. 

11 Find f(x) given f'(x) =2¢7%* and f(0)= 

12 A curve has gradient function /z 4+ $e~4% and passes through (1, 0). Find the equation of the 

function. 

13 Show that (sinz + cosz)? = 1 +sin2z, and hence determine /(sinx + cosz)? da. 

14 a Rearrange the double angle formulae cos2z = 1 — 2sin?x and cos2z = 2cos?z — 1 to 

write expressions for sin?z and cos? z. 

b Hence find: 

i /siandz ii /COSQIdI 

Example 9 LR (R (TS 

  

Integrate (2 —sinx)? with respect to . 
  

—gi 2 / (2 —sinx)? dz The identities 
cos?f) = 3+ L cos 20 

e /(4 — 4sinz +sin’ z) da 
sin2f = %7 écos2€ 

are extremely useful! 

  

=/(4—4sinz+%— %cos?x) dx 

= /(% —4sinx — %cos?x) dx 

=2z +4cosz — % X $sin2z+c 

  =%z +4cosz — Xsin2z + ¢   
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15 Integrate with respect to x: 

a cos’x+2 b sin’xz 4+ 4x ¢ 1+cos’2 d 3—sin’3z 

e Lcos’dx f (14 cosz)? g sinz(2sinz —1) h (1—3sinz)? 

LR o) Self Tutor 

  

«/ >/ 5z — 3 1-2z 

=1ln|5z—3|+c =4(L) |1 -2z|+c 

=—2ln|1-2z|+c 

  

16 Find: 

a / LA b/ L da c/ 3 da 
J z+4 2¢ — 1 1—2 

5 4 1 
d /1_3zdz e /(1—21+z_3>dz f /(4+5z_2)dz 

e 4 1 2 . 5 2 . 
g '/<€ 2x+1)dm " /<x+2+x73)dz ! /(xffi 3x71)di 

17 To find /l dx, Tracy’s answer was /i de=1In|dz|+c 
4z 4dx 

      

      

          

L, 1 1 
Nadine’s answer was [ —do =1 [ —de=1ln|z|+c 

4z T 

Which of them has found the correct answer? Prove your statement. 

      

— . . -1 
18 Show that 3z may be written in the form 3 — 7 . Hence find 3z dx. 

T+ 2 T+ 2 T+ 2 

2 

— T 

[ I INTEGRATION BY SUBSTITUTION 
Consider the integral /(r2 +32)4 (22 + 3) da. 

  19 Find f(z) given f'(2) =2z — and f(—1)=3. 

The function we are integrating is the product of two expressions: 

e The first expression is (@ + 3x)*, which has the form f(u(x)) where f(u) = u* and 

u(z) = 22 + 3a. 

e The second expression is 2x + 3, and we notice that this is % 
I 

  

So, we can write the integral in the form /f(u(x)) Z—z dv where f(u)=u* and u(z) = 2% + 3x. 

Integrals in this form can be found using a method called integration by substitution.



Integration by substitution is the reverse process of differentiating using the chain rule. 

/f(u) du=F(u)+c .. (1) 

Bu T {chain rule} 

= fw 

/f(u) %dx =Fu)+c .. (Q2) 

Using this method, 
‘We use u in our solution, but we 

give our answer in terms of x, 2 4 / (z* 4 32)* (22 + 3) dx since the original integral was 
with respect to x. 

  

L = 2 du _ —/u T dv {u=2"+ 3z, dz_2I+3} 

4 . du 
= / u* du {replacing - dx by du} 

T 

5 

= u? +c 

=1@*+32)° +c VY 

Example 11 ) Self Tutor 

  

Use substitution to find: 

/ Va3 + 2z (32 + 2) do /zelfl"2 dx 

  

/ Va3 + 2z (322 + 2) dx /;relf‘rz dx 

d =/\/E£dz {u=2%+2z, =1 /(,21)6171 da 
du 

1 —:3.1‘2+2} 
:/uzdu dx :,%/eud_udl {u:lfxz, 

c du s o d—=—2z} 
u 

“ v 

4, —5/6 du 

2 
3 =_1leu 

=%(x3+2x)3+6 S     
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Example 12 o) Self Tutor 

Integrate with respect to x: 

a cos®zsinz b 5% 
simxT 

a / cos® zsinz dx b / Cf)sx dx 
s 

3 : 1 du . 
=/(cosz) sinz dx =/——dz {u=sinz, 

u dz 

& os x} 
:/u3 (7d—u) dx {u = cosz, :/idu dx 

dx u 

i x} =—/u3du dz =In|u|+c 

=In|sinz|+c 
4 

= 7% +c 

=—leostz+c 

The substitutions we make need to be chosen carefully. 

For example, in Example 12 part b, if we let u = cosz, then Z—u = —sinz and we obtain 
T 

/ L% oy = % dzx. This is not in the correct form to apply our theorem, so we have made the 
sinxT —— 

dx 

wrong substitution and we need to try another option. 

EXERCISE 16E 

1 Differentiate (22 — ), and hence find /(21 —1)(2* — x)? da. 

2 Differentiate sin(z?), and hence find /r cos(x?) d. 

3 Differentiate In(5 — 3z + 2?), and hence find 276 g 
5 — 3z + 22 

4 Use the substitution given to perform each integration: 

a /31‘2(1'3 +1)4de using u=2a%+1 b /;L'Ze’”s*'1 dr using u=a2%+1 

< /sin4 rcosxdr using u=sinx d /21 cos(z? — 3)dr using u =2%—3 

5 Integrate by substitution: 
E 4 2z 622 

a 4z%(2+a21)? b ——— € — 
232 +2%) /22 + 3 (223 — 1)4 

d (@P+20+1)322+2) e —% f =2 
(1 —=x2)5 (22 4 4z — 3)2 

6 Find: 

9 1—2z 22 evye a / 2¢ dx b/2xe dx c /fidz  
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7 Find: 

2 2x — 
a Y dx b L _dx < w3 dx 

22 4+ 1 ] 2—a2 22 — 3z 

8 Integrate with respect to x: 

a 2%(3-—2%)? b zy1-—2a? ¢ gel™® 

      

    

  

  

1 3 2 1— 
d (In) e (2z—1)e** f 2 

T 3 — 3z 

9 Integrate with respect to z: 

7 5 i o sinx 
a sin‘zcosx b cos’zsinz < 

4/COST 

d tanaz e +/sinxcosw [ e 
(2 +sinz)? 

i 2 . . < ST h ‘COS xT i zs1n(zz) 

1—cosz sin2x — 3 

10 Find: 

a / cos® x dx b / sin® 22 cos 2z dx: 

REVIEW SET 16A 

1 Find the derivative of x* — 22, and hence find / (223 — z) da. 

2 Find the derivative of sin(% — 2z), and hence find / cos(Z — 2z) da. 

3 Find: 

  

  

T 

d /(46”” — g) dx e /sin(4x —5)dz f /64_3”” dx 

3_ 42 _ 
a /(—3z4+6z2)dz b /?’z—;flldz < /(2z—fi)2dz 

6 Find y if: 

a fl:36_””7251n(%7ac) b @:cos4x7%x2 
dx dx 

7 Given that f'(z) =322 —4x +1 and f(0) =2, find f(z).
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13 

14 

The curve y = f(z) shown alongside has gradient 

function f’(z) = ax + 3. 

Find the equation of the curve. 

  

Given that f/(z) = 3¢* and f(0) =2, find f(2). 

Find: 

/ wQ; o ° /<62z73 - 3x27 1) d ¢ /((4 —32)* + sin(—22)) dz 

A curve has gradient function f’(z) = acos3z where a is a constant. f(0) = —1 and 

f(%) = 1. Find a and hence f(z). 

    

Find /(1 —sinz)?dz using the identity sin’z =1 — 1 cos2z. 

Find the derivative of /22 — 4, and hence find   A 
V2 -4 

Find /xsin(x2 + %) dx using u==x%+3. 

Integrate by substitution: 

a / 32””2 dx b /Qxezz_ldx 
x4 + 4z 

c /singzcoszdx d 

  

  

tan 2z dz 

REVIEW SET 16B 

2 

3 

Find the derivative of 6e~2%, and hence find / e 2% dx. 

1 
  

  

Find the derivative of In(2z + 1), and hence find / S dax. 
xr 

Integrate with respect to x: 

z2 -2 
— b (3z—4)? ¢ 4-—22? 

Find: 

a /(z§+3)dx /(Szf dx c /(3+2x)2dx 

Given that f/(z) =22 —3z+2 and f(1)=3, find f(z). 

Find y if: 

B _ (2 1) b Y — 40020072 
dx dx
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Find: 

a /(213—5z+7)dx b /(3z—i)dx ¢ /(1—x2)3dz 

d /(267‘T+3)d23 e /400521’(1&: f/(3+62171)2da: 

Find f(x) given f/(z) = % —1 and f(2)=e. 

A curve has gradient function % = az®+by/x — 1 where a, b are constants. Find the equation 
X 

of the curve given that it contains the points (1, 4), (2, 4), and (5, 1). 

Find f(x) given f/(z) =   \/43_395 and f(—4)=0. 

Show that (sinz — cosz)? = 1 —sin2z, and hence determine /(sinx — cosz)? da. 

Find: 

a/ ! dx b/ 4 dx 
3—2z S5z +1 

By differentiating (322 + z)3, find / (32% + 2)2(6z + 1) d=. 

    

Integrate by substitution: 

a / 22 dx b / Sinf dzx c /41’6_12 dz d /sinsa:dx 
x‘Z -5 cos* T 

Find / L _dx using the substitution: 

    

  

z2 -9 

a u=a>-9 b = 3sint



  

Definite integrals 

Contents: A Definite integrals 

B The area under a curve 

€ The area above a curve 

D The area between two functions 
E Problem solving by integration 
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OPENING PROBLEM 

On August 8, the intensity of light entering a I 
L i mt 

greenhouse is given by [ = 3sin {5 units per hour 

if the day is sunny, and I = sin ’1'—5 units per hour if the Ci 

day is overcast, where ¢ is the number of hours after 

sunrise, 0 <t < 10. > - 

The graphs of these curves are shown alongside. 

Things to think about: 

a Can you identify each curve? 

b Can you find the shaded area enclosed by C; and Cy for 0 < ¢ < 10? 

¢ If the intensity of light is regarded as its rate of energy transfer, what does the area in b mean 

about the energy entering the greenhouse? 

We have already seen how the Fundamental Theorem of Calculus gives meaning to a definite integral 

over a particular domain: 

b 
For a continuous function f(x) with antiderivative F(z), / f(z) de = F(b) — F(a). 

a 

In this Chapter we explore definite integrals and how they are used to calculate areas. 

FNNIINNNT DEFINITE INTEGRALS 
The definite integral 

b 
/ f(z)dx reads “the integral from 2 =a to x=b of f(z) with respect to 2” 

@ or “the integral from a to b of f(x) with respect to z”. 

When calculating definite integrals we can omit the constant of integration c as this will always cancel 

out in the subtraction process. 

We write F(b) — F(a) as [F({L)]Z , and so /bf(:v) dx = [F(m)]z = F(b) — F(a). 

For continuous functions, we can list the following properties of definite integrals: 

. Ef(z)dm—/baf(z)dx 

b b 
° / k f(z)dx = k/ f(x)dz, k is any constant 

a a 

. /abf(z)dfiff(x)dz=/:f(x)dz 

-/ " f(e) + ()] de = / ’ faydo + / e
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[N R LR R 

  
    

  

a (23 — 4z + 5) dz We omit the constant 
E of integration ¢ for 

= [%14 — 22 4 Sw]i definite integrals. 

4 -2 +50) - (4 
=6—31% 
_1u 

1 

4 < z 
b <2\/_+ ) dx < / sin 2z dx = —%cos 21] * 

0 0 
4 RV 1 

- [% % 31n\z\] 7(71§C015?fl)17 (73 c0s0) 
1 =—3(-2)+3 

5] =3 
=(§ 4)2+31n4)—(§( )2+31n1) d 

=2x8+6n2-%     =2 16mn2 

Some definite integrals are difficult or even impossible to evaluate analytically. 

In these cases you are expected to use a graphics calculator to evaluate the 
; GRAPHICS integral. CALCULATOR 

INSTRUCTIONS 

  

Example 2 LR (R (TS 

5 
Evaluate / ze® dx correct to 4 significant figures. 

2 
  

Casio fx-CG50 TI-84 Plus CE TI-nspire 
NORMAL FLOAT AUTO REAL DEGREE MP B *Unsaved w 

I:xez dx 
586.264 

o 586.2635803 

  

T          
5 

/ re® dr ~ 586.3 
2   
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EXERCISE 17A 

1 Find: 

a /ffidx and /f(—fi)dz 

1 1 
b /.237d:L’ and /(71'7)032 

0 0 

3 Find: 
2 

a /(13—4z)d b 
0 

L Find: 
1 

a /zzdz b 
0 

5 Evaluate: 

1 
g ! pdw h 

2m 

6 Find m suchthat/ (22 —1)de = 

7 Find: 
1 

a / (3z +1)"da b 
0 

8 Evaluate: 
1 

a /ezdz b 
0 

9 Evaluate: 

a / sinx dx b 
0 

5 
d / sin 3z dz e 

0 

            

  

Use questions 1 to 4 

to check the properties 

of definite integrals. 

C 
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10 

1 

12 

13 

14 

15 

16 

17 

18 

19 

a1
 

Use the identity cos?z = 2 + cos2z to evaluate / cos? - da. 
0 

3 
Use the identity sin®z =4 — 1 cos22 to evaluate / sin® x da. 

0 

Evaluate: /6 (sin3z — cosx) dx 
0 

12 
Write / Lz asa single logarithm. 

3 

      

  

    

x 

Find: 
—2 5 8 0 

a/ldz b/ldr c/2dz d/4dz 
¢ T i z+4 | Sz+4 _4 52z 

-z 

Find m such that / dx*ln(%) 
Jm 41—z 

Show that de +11 may be written in the form 4 + 5 T 
xr — T — 

  

5 

Hence show that / o+l —845m2 
3 =1 

Evaluate using technology: 
kil .3 1 . z 

a / Inzdx b / e dx < /6 sin(y/z) dz 
1 1 z 

4 

Use the Fundamental Theorem of Calculus to prove that for continuous functions: 

/bf(z)dx=—/af(z)dz b /bkf(x)dz:k/abf(x)dz, k is any constant 

/f dx+/f(xdz—/f 

d /[f(r)+g(z]dz—/f dr+/ (z) dx 

Write as a single integral: 

/;f(x)dxff[l?f(x)dx b 'Asf(x)dw,/:f(z)dx 

¢ /Sg(r)dx——/: (v )dz+/99( ) dx 

a If/fx)de and/f v =3, find/f 

b If/of(z)dz=5, A f(z)dz = -2, and /O f(z)dz =17, find /:f(z)dm 
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1 
21 Suppose / f(z)dx = —4. Determine the value of: 

-1 

a 17 f(x)dx b /71(2+f(r))dz < -/712f(z)dr 

d ksuchthat/ kf(x)de =17 
—1 

3 
22 1If ¢g(2) =4 and ¢(3) =5, calculate / (¢'(z) — 1) d. 

2 

23 a Find / 2z(2* — 1)3dzx using an appropriate substitution. 

2 
b Hence find / 22(z% —1)% da. 

1 

24 a Find / ze 2 dy using an appropriate substitution. 

2 
b Hence find / re™ 2 da. 

J1 

  25 a Find / L _dx using an appropriate substitution. 
2 — 22 

T 
dx 

2 — 22 ’ 
  

3 
b Hence find / 

J2 

26 a Find / (zz+2)2dw using an appropriate substitution. 

2 

b Hence find / L dx. 
1 (@2+2)? 

27 a Find / sin? 2 cosx dx using an appropriate substitution. 

5 
sin? & cos « da. b Hence find / 

Jo 

LM THE AREA UNDER A CURVE 
We have already established in Chapter 15 that: 

If f(z) is positive and continuous on the interval 

a < z < b, then the area bounded by y = f(x), 

the z-axis, and the vertical lines x =a and x =05 
b b 

is given by A:/ f(z)dx or /ydz. 
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ek ) Self Tutor 

Find the area of the region enclosed by y = 2z, the z-axis, © =0, and z =4 using: 

a a geometric argument b integration. 

4 
b Area:/ 2z dx 

0 

  

a 
Area= 3 x4 x 8 

974 
= 16 units® = [I ]0 

— 422 

= 16 units? 

Example 4 «) Self Tutor 

Find the area of the region enclosed by 3 = 2% + 1, the x-axis, 2 =1, and = = 2. 
  

2 
iz = / (12 +1)da It is helpful to 

1 
2 

3 

5+ 3 1 

sketch the region. 

  

    _ (8 1 
=(E+2) -+ \ 
= 32 units® 

We can check this result using technology. GRAPHING 

) 

GRAPHICS 
CALCULATOR 
INSTRUCTIONS 

EXERCISE 17B 

1 Find the shaded area using: 

a a geometric argument 

b integration. 

  

2 Find the area of each region described below using: 

i a geometric argument il integration 

a the region enclosed by y =5, the z-axis, + = —6, and = =0 

b the region enclosed by y =z, the z-axis, =4, and z =25 

¢ the region enclosed by y = —3z, the z-axis, z = —3, and z = 0.
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3 Find the exact area of: Ay 

a the blue shaded region 30 y=222 

b the yellow shaded region. 

15 

_3 T 
v                       

L Find the area of the region bounded by: 

a y =22 the x-axis, and z =1 

b y=2a°, thez-axis, x =1, and z =14 
1 ¢ y=32? -1, thez-axis, =2, and z=3. 

5 The graph of y = —2% + 2 + 6 is shown alongside. 

a Find the coordinates of A and B. 

b Hence find the shaded area. 

  

6 Find the area enclosed by each curve and the z-axis: 

a y=-2+7x-10 b y=-222+2r+4 ¢ y=3—2° 

Example 5 LR AT 

Find the area enclosed by one arch of the curve y = sin2z and the z-axis. 
  

The period of y =sin2z is =7, so the first positive z-intercept is 5. 

The required area = / * sin 2z dz 
0 

s {%(7 cos 290)] : 

3 
2 

0 

=—1 [cos 2:5] 
0 

= —1(cosm — cos0) 

=1 unit? 

  

  
7 Show that the area enclosed by y =sinz and the z-axis from z =0 to =7 is 2 units®. 

8 Find the area of the region bounded by y = cosw, the z-axis, * =0, and z = 3. 

9 Find the area enclosed by one arch of the curve y = cos3z and the x-axis.
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a Which of the shaded regions appears to be larger? 

b Calculate the area of each region, and check your 

answer to a. 

  

|y
 

  

11 The graph alongside shows y = tanz for —5 <z < 5. 

A is the point on the graph with y-coordinate 1. 

a Find the xz-coordinate of A. 

b Find /tanxdw. 

¢ Hence find the shaded area. 

  

12 Find the area of the region bounded by: 

1 . 
a y:z—Q, the xz-axis, =1, and 2 =2 

b y=¢", the axes, and z =1 

1 . 
c =2— —, the z-axis, and z =4 

N 
d theaxes and y =9 —=z 

e y=e"+e 7, the z-axis, v = —1, and = =1. 

13 a Showthat & (fl) - 
dz \1+ cosx 1+cosx 

b Hence find the area of the region bounded by 
1 . 

y = ———, the z-axis, * =0, and = =2. 
1+ cosx 

  

14 a Find b, correct to 4 decimal places. b Find the exact value of a. 

  

6a units? 
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¢ Find k, correct to 4 decimal places. d Find k such that area A and area B are 

equal. 

  

INVESTIGATION 

b 
Can / f(x)dx always be interpreted as an area? 

a 

1 1 

1 a Find / 2 dx and/ 22 da. 
0 -1 

b Using a graph, explain why the first integral in @ gives an area, whereas the second integral 

does not. 
0 

¢ Find / 23 dr and explain why the answer is negative. 
-1 

0 1 1 
d Show that / 2 dx + / 3 de = / 2° da. 

i 0 —il 
-1 

e Find / 2% dz and interpret its meaning. 
0 

2 Suppose f(z) is a function such that f(z) < 0 for all a < 2 < b. Write an expression for 

the area between the function and the z-axis for a < z < b. 

  

3 Evaluate using area interpretation: 

a /03f(z)dx b /37f(x)dx 

c /;f(z)dz d /07f(z)dz 

4 Evaluate using area interpretation: 

a /04f(x)dz b Afif(z)dx 

c /:f(x)dz d /Osf(z)dx 
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NS THE AREA ABOVE A CURVE 
If f(x) is negative and continuous on the interval Ty 

a 

  

a < z < b, then the area bounded by y = f(x), 

the z-axis, and the vertical lines x =a and = =0 

is given by 

Azf/abf(x)dx or 7/abydz. 

  

     

  

Proof: 

The reflection of y = f(z) inthe z-axisis y = — f(z). Y 

By symmetry, —f(z) >0 on the interval a <z < b, :y:—f(x) 

and the area bounded by y = — f(x), the z-axis, = = a, 

and = =0b isalso A. . b 
b : T 

o A= [l o4 
b i E, — :7/ f(2) da y=1r(=) 

a 

  

[3'€1, 1100 )     
      
     

Find the area bounded by the z-axis and y = 22 — 2z. 

The curve cuts the z-axis when y =0 

oozt —22=0 

o z(z—2)=0 

. x=0o0r2 

the z-intercepts are 0 and 2. 

  

2 
Area= — [ (22 —2z)dx 

0 

5] 
—-[(-4- 0] =4 

the area is 3 units?.   
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EXERCISE 17C 

1 Find the shaded area: 

  

Example ] .1;)) Self Tutor 

Find the total area of the regions contained by y = f(x) and the z-axis for f(z) = 2%+ 2% —3z. 

    

  

      
    

f(z) =2°+22% - 3z 
:z.(zj +2z —3) y=x3+ 222 

=a(z—1)(z+3) 
. y= f(z) cuts the z-axis at 0, 1, and —3. 

Total area 

  

  

  

  

Graphing the function helps 

us see where it is above 

. 0 . 1 
z4 | 223 32 zt | 223 322 

4 3 2 4 3 2 

) and below the z-axis. ~(0- (1) - (%~ 
=112 units®   
  

2 Find the total area enclosed by the function y = f(z) and the z-axis for: 

a f(x)=2°—-9z b f(z)=—a(z—2)(xz —4) ¢ flz)=a*—522 +4. 

3 a Explain why the total area shaded is not equal to 

/17 f(z)dx. 

b Write an expression for the total shaded area in 

terms of integrals.   
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For the graph of y = f(z) alongside, 
4 

/ f(x)dz = —6. Which region is larger, 
—2 

  

]Y
 A or B? Explain your answer. 

  

5 The area of the region bounded by f(z) = —g, the z-axis, =3, and z =k, is 9In2 units’. 
xr 

Find the value of k. 

6 a Sketch the graph of y =2sinz+ 1 for 0 <z < 27. 

b Find the area between the x-axis and the part of y = 2sinz + 1 that is below the z-axis on 

0<x< 2. 

The cross-section of a roof gutter is defined by 

_5 f(x) = 0.022* —0.4202 —2.5, for —5 < z < 5cm. 

a Find the cross-sectional area of the gutter. 

b The gutter is 20 m long. How much water 

can it hold in total? 

  

f(2)=0.022" - 0.422 — 2.5 
v 

8 a Find /xzcos(x3)dx. 

b Show that the red shaded region is 

twice as large as the blue shaded 

region. 
  

s]
Y 

  

[0 0000 THE AREA BETWEEN TWO FUNCTIONS 
Consider two functions f(z) and g(x) where 

f(z) = g(x) forall a<az<b 

The area between the two functions on the 

interval a < x < b is given by 

b 

A= / [F(z) - o(a)] de. 

 



Proof: 

  

Notice that if y = g(x) is negative on the 

interval a < x < b, wecanlet f(z) =0 

and hence derive the formula we saw in the 

last Section: 

A=—/abg(z)dx 

k] LR (R (1T 

Find the area of the region enclosed by y =2 +2 and y =2 +x — 2. 

  

y=x+2 meets y=a>+x—2 where 22+zx—-2=x+2 

soz2—4=0 

s (@+2)(z—-2)=0 

Lo =212 

Since x+2 > 22+ —2 on the interval —2 <z < 2, 

area=/2[(:1:+2)—(m2+m—2)]dz 

. 

[, 
= (-)- (5+3) 
=10% units® 

2?) dz 

2 

the area is 103 units?.  
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EXERCISE 17D 

1 a Sketch the graphs of y =2 —3 and y =22 — 3z on the same set of axes. 

b Find the coordinates of the points where the graphs meet. 

¢ Find the area of the region enclosed by the two graphs. 

2 Find the area of the region enclosed by: 

a y=a2>-2z and y=3 b y=x and y=22 

3 Find the area of the region bounded by y = 2¢*, y = ¢**, and 2 = 0. 

4 On the same set of axes, sketch y =22 and y = 422 

Find the area of the region enclosed by these functions. 

5 
5 The graphs of y = 1 

T 

  and y =3 —x are shown 

alongside. 

a Find the coordinates of A and B. 

b Find the exact value of the shaded area. 

  

  

6 The shaded area is 2.4 units?. 
Find k, correct to 4 decimal places. 

  

7 A region with > 0 has boundaries defined by y = sinz, y = cosz, and the y-axis. 

Sketch the region and find its area. 

8 The illustrated curves are the graphs of y = sinz and Y 

y = 4sinzx. 

a Identify each curve. 

b Calculate the shaded area. o 

™ x 

The illustrated curves are y = cos2x and 

y = cos® . 

a Identify each curve. 

b Determine the coordinates of A, B, C, D, 

and E. 

¢ Show that the shaded area is % units?. 
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a On the same set of axes, graph y =e” —1 and y =2 —2e~". Show all axes intercepts and 

asymptotes. 

b Find the points of intersection of y =e* —1 and y =2 —2¢ 7. 

¢ Find the area of the region enclosed by the two curves. 

  TR, 

  

Find the total area of the regions enclosed by y = 2% —6x +3 and y = 22 + 3. 

y=a°—6z+3 and y =22+ 3 meet where 

23 —6r+3=22+3 

L2t —22—6x=0 

cox(@—z—6)=0 
o z(z+2)(x—3)=0 

o x=0,—20r3 

  

—2 

      

0 3 
Total area = / (23 — 6z + 3) — (2% + 3)) dx ,,/ ((z® +3) — (z® — 62+ 3)) dz 

0 
0 3 

(z® — 2% — 6z) dx /( z° + 2% + 62) dz 
2 0 

4 23 L 4 3 
xr 2 . T X . 2 

{4 = Sx} \{ 4+3\31}   
  

  
    
  

13 

a Write the shaded area as the sum of two 

definite integrals. 

b Find the total shaded area. 

    
y=3x+6 

a Sketch the graphs of y = 2® — 5z and y = 22> — 6 on the same set of axes. 

b Find the z-coordinates of their intersection points. 

¢ Hence find the area enclosed by y = 2% — 5z and y = 22% — 6. 

Find the area enclosed by: 

a y=-2°+322+62—-8 and y=5r—5 

b y=2r%—-322+18 and y =23+ 10z — 6. 
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14 The illustrated curves are those of y = sinxz and Y 

y = sin 2z. A 

a Identify each curve. G Cs 

b Find algebraically the coordinates of A. om v 

¢ Find the total area enclosed by C; and Cy for 

0z <. 

ACTIVITY 1 

We have seen many instances where we have had to add several areas together in order to find the 

total area between a function and the x-axis, or the total area between two functions. 

For example: 

    
y=a>—222 5246 

  

This has required us to find every point of intersection, and take care as to whether we are adding 

or subtracting a particular integral. 

If we are using technology, we can save some work by using an absolute value function as seen in 

Chapter 3. 

What to do: 

1 a Copy the graph of y = —22? — 52 + 6, and on the same set of axes, plot 

y= |z3—2z2—51’+6‘. 

b Explain why the total area enclosed between y = 2* — 222 — 52 + 6 and the z-axis is 
3 

equalto/ |x372z275x+6‘dx. 
—2 

¢ Calculate this area using technology. 

GRAPHICS 
CALCULATOR 
INSTRUCTIONS 

2 Consider the total area enclosed between y = —2® + 322 + 2 —3 and y = 2z +4 on the 

interval —2 <z < 2. 

a Explain why the total area is equal to 
2 2 

/‘(I3I312}£E 3) (21}4)|dx /|x3}3z2z7dz 
= 

b Calculate this area using technology. 

  

  

3 Explain why the area between the functions f(z) and g(z) on the interval a < x < b is 

A= 1@ - ofa) | ao 
Use this formula to check your answers to some of the questions in the previous Exercise.
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I3 0000 ROBLEM SOLVING BY INTEGRATION 
When we studied differential calculus, we saw how to find the rate of change of a function by 

differentiation. 

Since integration is the reverse process of differentiation, integration can be used to measure the change 

in a quantity from its rate of change. 

When we introduced integration, we separated the area under a curve into rectangles. The area of each 

rectangle is the rate of change of the quantity times the subinterval width, which tells us the change in 

the quantity corresponding to that subinterval. 

So, the area under a rate function for a particular interval tells us the overall change in the quantity over 

that interval. 

Example 10 l1>)) Self Tutor 

The rate of power consumption by the city of Bristol can be 

modelled by the function 

B(t) = 03sin (Y427 4 0.1cos (U527 ) +0.775 GW 

where ¢ is the number of hours after midnight each day, 

0<t <24 

  

Find the following quantities and explain what they 

represent: 

12 24 24 ) 
a / E(t)dt b / E(t)dt < / E(t) dt d 

0 12 0 Ipgphotos/Shutterstock.com 

B(t) = 0.3sin (457 +0.1cos (4527) +0.775 GW 

/E(t) dt = 0.3(—cos (427 ) (£2) + 0.1sin (4522 (£) +0.775¢ + 

=38 cos<w> 428 sin(fi%fi> +0.775¢ + ¢ 12 

12 
a / B(t) db = (~38 cos T + L8shr7 +9.3) — (38 cos(~32) + LL sinf=7) + ) 

0 
~ 7.315 GWh 

The morning power consumption of Bristol is about 7.32 GWh. 

24 
b / E(t)dt = (—28 cos I + LS simr3m + 18.6) — (—28 cos £ + Ll sirrT +9.3) 

12 
~ 11.285 GWh 

The afternoon power consumption of Bristol is about 11.29 GWh. 

  

  
  

    

24 12 24 

c / E(t)dt:/ E(t)dt+/ B(t) dt ~ 18.6 GWh 
0 0 1 2 

The total daily power consumption of Bristol is about 18.6 GWh.    
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EXERCISE 17E 

1 The rate of traffic flow past a pedestrian crossing AR(t 
  

  

  

  

  

  

  

  

between 8 am and 8:30 am is given by 50 
3 2 

R(t) = % — % + 4t +40 cars per minute, 

where ¢ is the number of minutes after 8 am, 40 

0<t<30. 

The graph of R(t) against ¢ is shown alongside. 

a Find the rate of traffic flow at 8:20 am. 30 

b Use the graph to estimate the time at which 

the traffic flow was greatest. 20 
PRINTABLE 
GRAPH ¢ Copy the graph, and shade the region 

15 
corresponding to / R(t)dt. Explain what 1 

10 
this region represents. 

  

  

  

                  

  

d How many cars passed the crossing between 0 

8 am and 8:30 am? 0 10 20 30 

2 Evan is happily paddling until his kayak strikes a 

sharp rock. Water begins to leak in at the rate 

Ri(t) = 5 — 5e7%2* litres per minute, where ¢ is 
the time in minutes. Evan tries to bail the water out 

of the kayak, removing the water at the rate 

Ry(t) = 6 — 671 litres per minute. 

a After 2 minutes, at what rate is water: 

i leaking into the kayak 

ii being bailed from the kayak? 

  

b Is the amount of water in the kayak increasing or decreasing after 2 minutes? Explain your 

answer. 

¢ Evaluate the following integrals, and interpret their meaning: 
3 5 8 

i / Ry(t)dt i / Ry(t) dt fii / [R1(t) — Ro(t)] dt 
0 2 0 

d How much water is in the kayak after 10 minutes? 

3 Answer the Opening Problem on page 400. 

L The rate of power consumption of the United Kingdom can be modelled by the function 

E(t) = 13sin (@) + 70 cos (@) +196 TWh per month 

where ¢ is the number of months after January 1st, 0 < ¢ < 12. 

a Use technology to help sketch the function. 

b Find the following quantities and explain what they represent: 
4 8 12 

|/3E(t)dt ii /5E(t)dt iii /0 E(t)dt
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ACTIVITY 2 

The French naturalist and mathematician Georges-Louis Leclerc, Comte de Buffon (1707 - 1788) is 

best known for his challenges to previously held views of natural history. While ultimately incorrect, 

they gave spark to new and better models from those who followed. 

For example, he proposed that the planets were formed from the collision of a comet with the Sun, 

and thus estimated the planets must be around 70 000 years old. 

He also decided that given the correct conditions, life could be spontaneously created. However, he 

thought that even large animals could be instantly created. 

In mathematics, Buffon was the first person to apply ideas in calculus to probability. 

Buffon’s needle problem is named after him: 

Given a series of parallel planks w units apart, what \ Z 

is the probability that a needle of length | units, when ‘i 
- . l 

tossed onto the planks, will lie on a line between two 

planks? / 

To solve this problem, we must separately consider the “short needle” case where [ < w, and the 

“long needle” case where [ > w. 

CASE 1: THE SHORT NEEDLE 

Suppose a needle of length [ < w is tossed onto the 

planks. 

  

Let 6 be the angle between the needle and the plank lines 

(measured anticlockwise as shown), and D be the distance 

between the centre of the needle and the nearest plank line. 

  

What to do: 

1 Determine the range of possible values of: a 0 b D 

2 s it reasonable to assume that 6 and D will take values in their ranges with equal probability? 

Explain your answer. 

3 Explain why the needle will lie on a line if D < ésin 0. 

4 Use 1 to 3 to explain why the probability of the 

needle lying on a line is equal to the probability that a 

randomly chosen point from rectangle ABCD lies in 

the shaded area. 

5 Find the shaded area, in terms of [. 

6 Hence show that the probability that the needle lies 

L. 21 
on a line is —. 

wm 
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CASE 2: THE LONG NEEDLE 

Now suppose the needle has length [ > w. 

What to do: 

1 Use the diagram alongside to explain why the 

reasoning for [ < w is not valid for [ > w. 

2 Show that 6% =sin™'(%). 

3 a Explain why the probability that a needle of length 

[ > w lies on a line is given by 
o 

(m—20")% +2/ (4sin0) do 
- Jo = 

wr 
2 

  

P 
b Hence show that this probability is 1 — 2 in! (%) S 2 (1 = fi) 

™ wm l 

4 Verify that the short needle and long needle formulae give the same probability for the boundary 

case | =w. 

REVIEW SET 17A 

1 Find the exact value of: 

a /0(1—3x)da: b /j(a;—\/g‘c)da: ¢ /12(12+1)2dz 
2 

2 Find b such that: 
b b 

a /(z—b)zdz=9 b /(I2+%z)dz=3 
0 0 

3 Find the exact value of: 

-1 o 6 9 

a V1 —3zdx b / cos 5 dz < / —dzx 
—5 0 2 T 

& If / el =2 dgr = Z, find the exact value of a. 
0 

© 
5 Use the identity sinz = 3 — 4 cos2z to help evaluate / sin® (%) da. 

0 
™ 

6 Find di(e’h sinz) and hence evaluate /2 [e7%"(cosa — 2sinz)] da. 
T 0 

7 Evaluate correct to 6 significant figures: 

4 1 
T - d b 2J,+1d 

almz /U“ g 
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8 a Find /21(12 +1)%dx using the substitution u = 22 + 1. 

b Hence evaluate: 
1 5 

i / 22(z +1)% da ii / —z(1+ 223 dx 
0 =1 

  

9 a Find /;rzel’m:5 dx using an appropriate substitution. 

  

1 : — 

b Hence show that / 22l dyp = & 3 ! 
0 

10 Find the shaded area: 

a Yy b 

y=z242 

   
11 Find the area of the region bounded by: 

a y=2a2 thex-axis, =2, and =25 

b y=+5—u, thez-axis, x =1, and =z =2 

¢ y=sin%, the z-axis, z ==, and = = 2. 

12 a Sketch the graphs of y =22+ 42 +1 and y =3z +3 on the same set of axes. 

b Find the points where the graphs meet. 

¢ Hence find the area of the region enclosed by y = 2% + 4z +1 and y = 3z + 3. 

3 
13 Does f(z)dz represent the area of the 

—1 

shaded region? Explain your answer. 

  

]V
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14 Determine £ given that the enclosed 

region has area 5% units?. 

  

15 a Find a given that the area of the region y 

between y = e and the z-axis from = =0 y=e® 

to z =a is 2 units’. 

b Hence determine b such that the area of the 

region from z =a to x = b is also 2 units. 

  

16 Find the area of the region enclosed by y =3 + 2% +22+6 and y="T72? —z —4. 

17 a Sketch the graphs of y = sin?z and y =sinz on the same set of axes for 0 <z < 7. 

b Find the exact value of the area enclosed by these curves for 0 <z < 5. 

18 Bettina is filling a watering can with water from a 

tap. The water enters at the rate R;(t) = 6.4 litres 

per minute. 

Bettina’s watering can starts empty, and has capacity 

16 litres. Unfortunately it has a hole in the bottom, 

so it leaks water at the rate Ro(t) = 2.5 — 1.25¢70-2¢ 
litres per minute, where ¢ is the time in minutes. 

a Evaluate the following integrals, and interpret 

their meaning: 
1 

i /0 Ry(t)dt i /0 [Ri(t) — Ra(t)] dt 

b How long will it take for the watering can to be full? Give your answer to the nearest 

second. 

  

     
19 a Find /zsin(xz)dx. 

— 3 2 

b Show that the shaded regions have equal W=l 

area.
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REVIEW SET 17B 

1 Find the exact value of: 
3 1 4 1 

2 2 2 a /Qde b /1(x7%x)dx < /O(x +3)da 

a 

2 If / (a® — 3a)dx = 1%, find the exact value of a. 
0 

3 Find the exact value of: 

    

3 1 3e 4 z 

a d b d < 2si 1)d /2 Ny 4 /2() T /§ (2sinz + 1) dx 

b 1 
& Find the values of b such that / cosxdr =—, 0<b<m. 

0 \/5 

ol 

5 Use the identity cos®>z = % S %cos 2z to help evaluate / cos? (%) dz. 
0 

6 Evaluate correct to 4 significant figures: 

0 1 
_.9 10z 

a de™* d. b d. 

4 
7 lf/ f(z)dx =3, determine: 

1 

/14(f(:r)+1) dw b /lzf(x)dzf/:f(:r)dx 

1 
¢ k given that / kf(z)dx = 

4 

  

8 a Show that (sinf —cosf)? =1 —sin26. 
s 

b Hence find /4 (sin@ — cos6)? d. 
0 

9 a Find (e +2)® using the binomial expansion. 

1 
b Hence find the exact value of / (e® +2)3 da. 

0 

¢ Check your answer to b using technology. 

10 a Find 5% dw using an appropriate substitution. 
(1 + sin z)5 

Ccos T 
b Hence find / ° dz. 

o (1+sinz)3



DEFINITE INTEGRALS  (Chapter 17) 423 
  

11 Find the area of the region bounded by: 

a y=2%+1, the z-axis, x =1, and o =3 

b y:l, the z-axis, x =3, and z =9 
xr 

¢ y=e?* thez-axis, 2 =0, and = =2 

d y=—-2—2cos3z and the z-axis from z = — 

w
3
 

12 Find the shaded area. 

  

  

13 Determine the area enclosed by the axes and y = 4e® — 1. 

2 14 a Sketch the graphs of y = 2% — 12 and y = —22 on the same set of axes. 

b Find the points where the graphs meet. 

¢ Find the exact area of the region enclosed by y = 2* — 12 and y = —a2. 

15 OABC is a rectangle and the two shaded regions are equal 

in area. Find k. 

  

The shaded region has area % unit?. 

Find the value of m. 

16 

  

3 17 Determine the total area enclosed by y = 2® and y = 72 — 10z. 

a Find a given that the shaded area is 4 units®. 

b Find the z-coordinate of A given [OA] divides the 

shaded region into equal areas. 

    
y=azx(z—2)
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19 Over the course of a day, the rate of solar energy being (/‘\ 

transferred into Callum’s solar panels is given by , ) 

E(t) = 2sin(53) + §sin(42) kW !! 

where ¢ is the time in hours after midnight, 5 < ¢ < 20. \ 

Find the following quantities and explain what they / 

represent: / 
12 20 

a /5 E(t)dt b /12 E(t) dt 

20 

< /5 E(t)dt 

    

   



  

Kinematics 

Contents: A Displacement 

B Velocity 

€ Acceleration 

D Speed 
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  OPENING PROBLEM 

Michael rides up a hill and down the other side to his friend’s house. The dots on the graph show 

Michael’s position at various times ¢. 

  

  

  

  

  

  

  

                                              

DEMO 

t=0 t=5 t=15 t=17 t=19 

Michael’s place t=10 friend’s house 

The distance Michael has travelled at various times is given by the function 

s(t) = 1.2¢3 — 30t2 + 285t metres for 0 < ¢ < 19 minutes. 

s(m) 

s(t) =1.2¢% — 30t 4 285t 

5 

- > 

5 10 15 t (min) 

Things to think about: 

a At what point do you think the hill was steepest? How far 

had Michael travelled to this point?   
b How can we find Michael’s average speed between ¢ =5 

and ¢ = 15 minutes? 

¢ How can we find Michael’s speed at a particular instant? Can 

we write a finction which will tell us Michael’s speed at any 

time ¢? 

  

Kinematics is the study of motion. 

In previous years you should have studied travel graphs which plot distance travelled against time taken. 

In this Chapter we consider kinematics more formally, taking into account direction as well as distance 

and speed. This will lead us to functions for displacement, velocity, and acceleration, and how they 

are linked by calculus. 

THE LANGUAGE OF MOTION 

Consider an object P which is in motion along a straight line. 

e The distance it travels accumulates over time, irrespective of its direction of travel. 

o The speed S of P is how fast it is travelling. 

e The displacement s of P is its position relative to a fixed origin O. 

e The velocity v of P is its rate of change of displacement. 

e The acceleration a of P is its rate of change of velocity.
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1 What is the difference between: 

a distance travelled and displacement b speed and velocity? 

2 Each of the following expressions refers to a zero of one of the variables time ¢, displacement s, 

velocity v, or acceleration a. Discuss which variable each expression refers to and what it 

means. 

a initial conditions b at the origin QuIicK 
REFERENCE 

¢ stationary d reverses direction S 

e maximum or minimum displacement f constant velocity 

g maximum or minimum velocity 

3 Does a zero displacement correspond to: 

a zero distance travelled b zero speed? 

4 How should we interpret the sign of: 

a displacement b velocity ¢ acceleration? 

ENEE DISPLACEMENT 
For an object P which is in motion along a straight line: 

e The displacement s of P is its position relative to a fixed 
t 

origin O. <—w—> 
O P 

o The displacement function s(t) gives the displacement of origin 

the object at any time ¢ > 0. 

> When s(t) >0, P is to the right of the origin. 

> When s(t) <0, Pis to the left of the origin. 

Example 1 «) Self Tutor 

A lighthouse is situated on the top of a cliff. A stone is 

thrown from the top of the lighthouse. The stone falls past 

the base of the lighthouse, and lands after 6 seconds in the 

water below. 

The displacement of the stone above ground level 

s(t) = —5t2+20t +25m for 0<t<6s. 

a Find the initial displacement of the stone. 

  

Use quadratic theory to graph s(¢). 

At what time and place does the stone change direction? 

Q
 

an
 
O
 

For what time interval is the stone above ground level? 

  
a s(0)=25 

the initial displacement of the stone is 25 m.  
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b s(t) = —5t% + 20t + 25 s(t) 
—5(t2 — 4t — 5) 

=-5(t—5)(t+1) 

¢ The stone changes direction at the turning point of s(¢). 
-20 _ 

s 2 
5(2) = =5(2)2 +20(2) +25 =45 m 

The stone changes direction after 2 seconds, when it is 

45 m above ground level. 

s(t) = —5t2+20t + 25    
This occurs when t = 

d The stone is above ground level whenever s(t) > 0. 

This occurs for 0 <t <5 s.       

A motion diagram is used to plot the position of an object on a single number line. It can be helpful in 

reminding us that we are looking at motion in one dimension only. 

For the object in Example 1, the motion diagram is: 

i i i i i i MOTION Click on the icon to explore motion diagrams for other displacement functions. Ayl 

EXERCISE 18A 

1 An object travels with displacement function s(¢) 5—tcm for 0<t<10s. 

a Find the initial displacement of the object. 

b Find the displacement of the object at time: 

i t=3s il t=10s. 

At what time does the object reach the origin? 

Q 
n 

Does the object ever change direction? Explain your answer. 

e Draw a motion diagram showing the information you have found. 

2 An object travels with displacement function s(t) =102 — 7t +1m for 0<¢ < 1s. 

a Find the initial displacement of the object. 

Use quadratic theory to graph s(¢). 

At what time and place does the object change direction? 

b 

< 

d For what time interval is the object to the right of the origin? 

e Draw a motion diagram showing the information you have found. 

3 A mass on a spring oscillates with displacement s(¢) = 8sin8xt + 6 cm where 0 < ¢ < 0.25s. 

At what times is the displacement 6 cm? 

Plot the graph of s(¢) for 0 <t¢ < 0.25s. 

Find where and when the mass changes direction. 

2 
an 
C
 o
 

Draw a motion diagram showing the information you have found.
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D veoary 
The velocity of an object is its rate of change of displacement. 

  

AVERAGE VELOCITY - . 
Rate of change” tells 

In many real-world scenarios, we only know certain data us immediately to 

points for where an object was at a particular time. In think about a gradient. 
these cases, we can only calculate the average velocity 

between data points. 

  

The average velocity of an object moving in the time interval from ¢ =1¢; to t =ty is given by 

. change in displacement 
average velocity = ——————— 

change in time 

s(t2) — s(t) 
T B —0n 

On a graph of s(¢) against ¢, the displacement s (m) 

average velocity is the gradient of the 

chord through the points Py (1, s(t1)) 

and PQ(tQ, S(tz)). 

  

  

< ¢ tll t'2 » time ¢ (s) 

INSTANTANEOUS VELOCITY 

If we know the complete function s(t), we can find the instantaneous velocity of the object at any time. 

The instantaneous velocity or velocity function of the object at time ¢ is v(t) = s'(¢). 

It is the gradient of the tangent to the function s(t) at any given time. 

Notice that: 

e When u(t) >0, the object is moving to the right. 

e When v(t) <0, the object is moving to the left. 

e When ov(t) =0, the object is instantaneously at rest. A change in the sign of v(¢) at this time 

indicates that the object has changed direction. 

When we take a derivative with respect to ¢, we calculate a rate per unit of time. So, for a displacement 

in metres and time in seconds, the units of velocity are ms—!.
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Example P '1>)) Self Tutor 

A particle moves in a straight line with displacement from O given by s(t) = 3¢t —¢> metres at 

time ¢ seconds. Find: 

a the average velocity for the time interval from ¢t =2 to ¢ =5 seconds 

b the instantaneous velocity at ¢ =2 seconds. 

  

a average velocity = w b s(t) = 3t — t* 

(15— 25) — (6—4) vt =st)=3-2t 
3 coou(2)=3-2(2) 

o =—-1ms! 

_ 4:;15,1 The particle is travelling at 1 ms~! to the 

left.     
EXERCISE 18B.1 

1 Consider the displacement-time graph alongside. 
  

  

a Find the displacement of the object when: 

i t=2 seconds il t=8 seconds. 
  

  

b Find the average velocity of the object from 

t=2 to t =3 seconds. 
  

  

¢ Find the instantaneous velocity of the object 

when ¢ =15 seconds. 
  

  

    

        

  

                    
2 A particle moves in a straight line with displacement from O given by s(¢) = t> — 6t + 1 metres 

at time ¢ seconds, t > 0. 

a Find the average velocity from ¢ =1 to t =3 seconds. 

b Find v(t). 

¢ Hence find the instantaneous velocity at: 

i t=1 second ii t=05 seconds. 

  

3 Consider the displacement-time graph alongside. 
  

a Describe the initial position of the object. 
  

b At what time is the object at the origin? 
  

  ¢ In which direction is the object moving when 

t =15 seconds?   

  d At what times does the object change direction? 
  

e Draw a sign diagram for: 
  

i the displacement function s(t) 
  

  
                          il the velocity function v(t). 
  

f Find the instantaneous velocity of the object when 

=T seconds.
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4 An object moves in a straight line with displacement function s(t) = 2v/Z + 3 cm, where ¢ is in 

seconds, t > 0. 

a Find the average velocity from ¢t =1 to ¢t =4 seconds. 

b Find the initial position of the object. 

¢ Find v(t). 

d Hence find the instantaneous velocity at: 

i t=4 seconds il t=16 seconds. 

5 An object moves in a straight line with position given by s(t) = t*> — 11¢?> + 24t m from O, where 

t is in seconds, t > 0. 

a Find the velocity function v(t). 

Describe the initial conditions of the object. 

Draw a sign diagram for s(¢) and v(t). 

At what times is the object at O? 

At which times does the object reverse direction? Find the position of the object at each of 

these times. 

0 
O 

A 
O 

f Describe in words the motion of the object. 

g Draw a motion diagram for the object. 

6 A shell is accidentally fired vertically from a mortar at ground level. Its height above the ground 

after ¢ seconds is given by s(t) = bt — 4.9t> metres where b is constant. 

a Show that the initial velocity of the shell is b ms~! upwards. 

b The shell reaches its maximum height after 7.1 seconds. 

i Find the initial velocity of the shell. 

ii  Find the maximum height reached by the shell. 

FINDING DISPLACEMENT FROM VELOCITY 

Since the velocity function is the derivative of the displacement function, we can use integration to 

reverse the process. 
differentiate 

ds 
s(t v(t) = — ® 0 == 

displacement velocity 

integrate 

To find the constant of integration, we would need to know the displacement at a particular time. Most 

commonly, this would be the initial displacement s(0). 

CHANGE IN DISPLACEMENT 

We can determine the change in displacement in a time interval t; < ¢ < ¢y using the integral: 

to 

Change in displacement 
= s(t2) — s(t1) = / v(t) dt 

t1
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DISTANCE TRAVELLED 

For a velocity-time function v(t) where v(t) > 0 on the interval ¢; <t < ¢, the distance travelled 
to 

will simply be the change in displacement / u(t) dt. 
ty 

     
    

If v(t) > 0, the distance 

travelled is the area 

under the velocity curve. 
     

If we have a change of direction within the time interval then the velocity will change sign. To find the 

total distance travelled, we therefore need to add the components of area above and below the t-axis. 

Alternatively, we can integrate the absolute value of the velocity, which is the object’s speed. 

t2 

Distance travelled = / |v(t)| dt 
t1 

  

ek ) Self Tutor 

  

The velocity-time graph for a train journey is v(kmh™1) 

illustrated in the graph alongside. Find the total 60 

distance travelled by the train. 

  

  

  

30     

  

                0   0 01 02 03 04 05 06 i(h 
  

Total distance travelled 

= total area under the graph 

  area A + area B + area C + area D + area E 

= 2(0.1)50 + (0.2)50 + (2252) (0.1) + (0.1)30 + $(0.1)30 

=25+10+4+3+15 

=21 km 

I 
A particle P moves in a straight line with velocity function v(t) =¢? — 3t +2 ms~!. 

  

  

01 02 01 01 01 

  

  

a Find the times when P reverses direction. 

b Hence find the distance P travels in the first 4 seconds of motion. 
4 

Check your answer by evaluating / |v(t) | dt. 
0 

¢ Find the change in displacement of P in the first 4 seconds.    
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a v(t)=s5@)=t2—3t+2 

=(t-1(F-2) 
the sign diagram of v is: + — 4+ o(t) 

1 2 t 

0 

Since the signs change, P reverses directionat ¢t =1 and ¢ =2 seconds. 

b Now s(t):/(t273t+2)dt 

  

= fi - fi +2t+c 
3 2 We are not told the 

We choose the initial displacement to be zero, displacement of the particle 

so $(0)=c=0. at any given time, so we 
_ 1 3 _5 can choose the origin to be 

s(1) = 5-2t2Fe=g its initial position. 

s(2)=8—-6+4+c=2 

s(4) =% —-24+8+c=51 

Motion diagram: 

e 1 
2 5 1 iti 0 2 3 53 position 

; 5 5 _ 2 12 2 total distance travelled = 3 + (2 — ) + (55 —3) =53 m 

Casio fx-CG50 TI-84 Plus CE HP Prime 
m NORMAL FLOAT AUTO REAL DEGREE HP 

CALC INTEGRAL OVER INTERVAL 

1 
LOWE] 

Idx=5IGGBBBBBB 

£x)dX=5.6666667 (0,41 Signed area: 5.66666666667 

  

¢ Change in displacement = final position — original position 

=5(4) = s(0) 
=5im 

So, the displacement is 5% m to the right. 

  

EXERCISE 18B.2 

1 A runner has the velocity-time graph shown. Find A velocity (ms™') 

the total distance travelled by the runner. 10 

  

  

    

  

  

              

S
 

N
 

A
 

D
 

0 5 10 15 20 time(s)
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4 velocity (kmh ) A car travels along a straight road with the 

60 velocity-time graph illustrated. 

40 a What is the significance of the graph: 

20 i above the t-axis 

o t(h) ii below the t-axis? 

010203 04@077 b Find the total distance travelled by the car. 

-2 ¢ Find the final displacement of the car from its 
v 
  starting point. 

After leaving a station, a train accelerates at a constant 

rate for 40 seconds until its speed reaches 15 ms™—!. 

The train then travels at this speed for 160 seconds. On 

its approach to the next station, the train slows down at 

a constant rate for 80 seconds until it is at rest. 

a Draw a graph to show the train’s motion. 

b How far did the train travel between the stations? 

  

A cyclist rides off from rest, accelerating at a constant rate for 3 minutes until she reaches 

40 kmh~!. She then maintains a constant speed for 4 minutes until reaching a hill. She slows 

down at a constant rate over one minute to 20 kmh~!, then continues at this speed for 5 minutes. 

At the top of the hill she reduces her speed uniformly, and she is stationary 2 minutes later. 

a Draw a graph to show the cyclist’s motion. 

b How far has the cyclist travelled? 

A particle has velocity function v(t) =1—2t cms™! as it moves in a straight line. 

a Find the time when the particle reverses direction. 

b Hence find the total distance travelled in the first second of motion. 

Check your answer by evaluating / [v(t) | dt. 
0 

¢ Find the change in displacement of the particle in the first second. 

Particle P is initially at the origin O. It moves with the velocity function v(t) =¢> —¢—2 cms™%. 

a Write a formula for the displacement function s(t). 

b Find the total distance travelled in the first 3 seconds of motion. 

¢ Find the particle’s displacement from its starting position after three seconds. 

A ball is thrown from 1 m above ground level. Its velocity is @ 

v(t) = 29.4 — 9.8t ms~L. |\ 

a Find the displacement function s(¢). N 

b Find the maximum height reached by the ball. % 

w/
 " 
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10 

1 

12 

13 

The velocity of a moving object is given by v(t) =32+ 4t ms™ . 

a If s=16m when ¢t =0 seconds, find the displacement function. 

b Explain why the change in displacement of the object and its total distance travelled in the 
- 

interval 0 <t < 7, can both be represented by the definite integral / (32 + 4t) dt. 

¢ Find the distance travelled by the object in the first 4 seconds. ! 

An object has velocity function v(t) = cos2t ms™'. 

a Show that the particle oscillates between two points, and find the distance between them. 

b If s(§)=1m, determine s(5) exactly. 

When a pendulum is released, its velocity along the arc of motion after ¢ seconds is given by 

v(t) =20+ 5sin4t cms™1 

a Sketch the graph of v(t) against ¢ for 0 < ¢ < 6. 

b Find the pendulum’s velocity after 4.5 seconds. 

¢ Find the total distance travelled by the tip of the pendulum in the first 2 seconds. 

The velocity of a moving object is given by v(t) = —4++/f ms™'. Suppose the object is initially 

at the origin. Find: 

the displacement function 

the time when the object changes direction 

a 
T
 

o 

the change in displacement after the first 30 seconds 

d the total distance travelled in the first 30 seconds. 

A stunt motorcyclist rides towards a ramp. His velocity 

after ¢ seconds is given by v(t) = 10v/f ms™. 

a Find the motorcyclist’s velocity after: 

i 1 second ii 2 seconds. 

b Write a function s(¢) for the displacement of the 

motorcyclist after ¢ seconds. 

  

2 
¢ Find / v(t) dt, and interpret your answer. 

0 

d In order to perform his stunt, the motorcyclist needs to be travelling at 20 ms~! or faster when 

he reaches the ramp. 

i How long will he take to reach a speed of 20 ms—!? 

ii The motorcyclist started his approach 55 m from the ramp. Has he given himself enough 

distance to reach the required speed? 

to 

Use technology and the formula distance travelled = / |v(t)| dt to find the total distance 

travelled in the following scenarios: b 

a a skydiver has velocity v(t) = —54(1 —¢ &) ms™! for the first 15 seconds 

b a mass on a spring has velocity v(¢) = e *cos16t cms~! for 10 seconds.
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T ACCELERATION 
The acceleration of an object is its rate of change of velocity. 

If an object moves in a straight line with displacement function s(¢) and velocity function v(t), then: 

e The average acceleration for the time interval from ¢ =1¢; to ¢ =t is given by 

v(t2) — v(t1) 
average acceleration = 

ta — 1 

e The acceleration function a(t) of the object is given by a(t) = v/(t) = s” (). 

The displacement, velocity, and acceleration functions are therefore connected as follows: 

differentiate differentiate 

ds dv  d*s 
s(t v(t) = — )= — = — (® ® == oty =— =—3 

displacement velocity acceleration 

integrate integrate 

To obtain acceleration from velocity, we must calculate a rate per unit of time. So, for displacement in 

metres and time in seconds, the units of acceleration are ms™—2. 

Example 5 LR (R (ML) 

A particle moves in a straight line with position relative to O given by s(t) = > —6t>+9t—1 cm, 

where ¢ is the time in seconds, ¢ > 0. 

a Find expressions for the particle’s velocity and 

acceleration, and draw sign diagrams for each of them. 
The initial conditions 

describe the particle’s 

Find the initial conditions and hence describe the motion when ¢ = 0. 

motion at this instant. 

  

Find the position of the particle when it changes 

direction. 

Draw a motion diagram for the particle. 

Find the total distance travelled in the first 3 seconds. 
  

s(t) =13 —6t> +9t — 1 cm 
v(t) =32 —12t+9 {v(t) =s'(t)} 

=3(t2 — 4t +3) 
=3(t—1)(t —3)cms™! 

which has sign diagram: 

  

0 

and a(t)=6t—12cms™>  {a(t) = (1)} 
which has sign diagram: _  
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b When t=0, s(0)=—-1cm 

v(0) =9 cms—t 

a(0) = —12 cms ™2 

the particle is 1 cm to the left of O, moving to the right with speed 9 cms™ 

acceleration —12 cms™2. 

L and has 

¢ Since v(t) changes sign when ¢ =1 and ¢ = 3, a change of direction occurs at these 

instants. 

s(1)=1-6+9—-1=3, and s(3)=27—-54+27—1=-1. 

So, the particle changes direction when it is 3 cm to the right of O, and when it is 1 cm to 

the left of O. 

  - | ‘ | L L L | | > position 

origin 

e The total distance travelled = 4 +4 = 8 cm.   

  

EXERCISE 18C 

1 A particle moves with velocity function v(t) =10t —t*> cms™!, ¢ > 0. Find: 

the velocity of the particle when ¢ =2 seconds 

the average acceleration of the particle from ¢t =1 to ¢ =3 seconds 

an 
T
 

o 

the acceleration function a(t) 

d the instantaneous acceleration of the particle when ¢ =3 seconds. 

3 2 An object moves in a straight line with displacement function s(t) = > — > —5 metres at time 

t seconds, t > 0. 

a Find the object’s displacement, velocity, and acceleration when ¢ = 2 seconds. 

b Find the time at which the object has zero acceleration. 

3 A stone is fired from a catapult so that its position above ground level after ¢ seconds is given by 

s(t) = 98t — 4.9t metres, t > 0. 

a Find the velocity and acceleration functions for the stone, and draw sign diagrams for each 

function. 

b Find the initial position and velocity of the stone. 

¢ Describe the stone’s motion at times ¢ =5 and ¢ =12 seconds. 

d Find the maximum height reached by the stone. 

e Find the time taken for the stone to hit the ground. 

t 

4 A particle P moves in a straight line with displacement function s(t) = 100 +200e ° cm, where 

t is the time in seconds, ¢ > 0. 

a Find the velocity and acceleration functions. 

b Find the initial position, velocity, and acceleration of P. 

¢ Discuss the velocity of P as ¢ — oc. 

d Discuss the acceleration of P as ¢ — oo.
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5 An object has displacement function s(t) =t — In(2¢t + 1) cm, where ¢ is in seconds, ¢ > 0. 

a Show that the object is initially at the origin. 

b Find the velocity function. 

¢ Over what time interval is the object moving: 

i to the right il to the left? 

Show that the object’s acceleration is positive for all ¢ > 0. 

e Find the acceleration of the object after 2 seconds. 

f Find the distance travelled by the object in the first 2 seconds. 

6 The velocity of a particle travelling in a straight line is given by wv(t) = 50 — 10e=%-% ms~1, 
where ¢ >0, ¢ in seconds. 

a State the initial velocity of the particle. 

Find the velocity of the particle after 3 seconds. 

How long will it take for the particle’s velocity to reach 45 ms~!? 

Discuss v(t) as ¢ — oo. 

Show that the particle’s acceleration is always positive. 

Find the exact time at which the acceleration of the particle is 2 ms=2. 

Draw the graph of v(¢) against ¢. 

T 
W 

- 
® 

O 
A 

O 

Find the total distance travelled by the particle in the first 3 seconds of motion. 

Example 6 l1>)) Self Tutor 

A train is initially at rest at a station. It begins to accelerate 
t 

according to the function a(t) = %e 100 ms—2, 

  

a Find the velocity function of the train, and sketch its 

graph. 

b How long will it take for the train to reach the speed 

40 ms~1? 

¢ How far will the train travel in this time? 

  

  

t 

a a(t)=2e ™ ms~ 

v(t) =/%e_mdt 

t 

= —50e 10 4+ ¢ ms™ 

The train was initially stationary. 

—50e" +¢=0 

c=50 

2 

1 . 
v(t) = 50 — 50 100 

  

. t(s) o(t) = 50 — 50¢” T ms-1 0 50 100 150 200    
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b If v =40 then ¢ The train does not change direction. 

50 — 50571;_0 =40 . distance travelled 

t 1001n5 e 

50e 100 =10 = / (50 — 50e” 100 dt 

-+ 0 

e 1 =3 , 710015 

-t —m()=-m5 e [50t+50006 wo] 
100 0 

t=100In5 ~ 160.9 s 10015 

=50(1001n5) + 5000e 1 — 5000¢" 

= 50001n5 + 2592 — 5000 

= 50001n 5 — 4000 

~ 4047 m 

  

    
  

. . . . t 
7 A train moves along a straight track with acceleration a(t) = — —3 ms™2 

L. 10 
of the train is 45 ms—!. 

The initial velocity 

a Determine the velocity function v(t). 
60 

b Evaluate / v(t) dt and explain what this value represents. 
0 

8 An object has initial velocity 20 ms—! 
t 

a(t) =4e * ms™2. 

as it moves in a straight line with acceleration function 

a Show that as ¢ increases, the object approaches a limiting velocity. 

b Find the total distance travelled in the first 10 seconds of motion. 

9 A particle is initially stationary at the origin. It accelerates according to the function 

alt) = 5 f1)3 ms—2. 

a Find the velocity function v(¢) for the particle. 

  

b Find the displacement function s(t) for the particle. 

¢ Describe the motion of the particle at the time ¢ =2 seconds. 

We have seen that velocities have size (magnitude) and sign (direction). In contrast, speed simply 

measures how fast something is travelling, regardless of the direction of travel. Speed is a scalar 

quantity which has size but no sign. Speed cannot be negative. 

The speed S of an object at any instant is the magnitude of the object’s velocity. 

S =|v| 

1 1 For example, an object with velocity —5 ms~! is moving to the left with speed 5 ms™—*. 

To determine when the speed of an object P with displacement s(¢) is increasing or decreasing, we use 

a sign test.
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o If the signs of v(¢) and a(t) are the same (both positive or both negative), then the speed of P is 
increasing. 

o If the signs of v(¢) and a(t) are opposite, then the speed of P is decreasing. 

Discuss why the sign test for speed works by considering each case below: 

The object is travelling to the right (v > 0) and the acceleration a > 0. 

The object is travelling to the right (v > 0) and the acceleration a < 0. 

The object is travelling to the left (v < 0) and the acceleration a > 0. 

The object is travelling to the left (v < 0) and the acceleration a < 0. 

Example 7 ) Self Tutor 

  

A particle moves in a straight line with position relative to O given by s(t) = ¢> — 3t + 1 cm, 

where t is the time in seconds, ¢ > 0. 

a Find expressions for the particle’s velocity and acceleration, and draw sign diagrams for each 

of them. 

Find the initial conditions and hence describe the motion of the particle at this instant. 

Describe the motion of the particle at ¢ = 2 seconds. 

b 

< 

d Find the position of the particle when it changes direction. 

e Draw a motion diagram for the particle. 

f For what time interval is the particle’s speed increasing? 

  

a s(t) =t —3t+1cm . 

. u(t)=3t>-3 Since ¢ > 0, the 

_ 2_q stationary point at 

=3 -1 t = —1 is not required. 
=3(t+1)(t—1) ecms™! 
which has sign diagram: 

    
and a(t) = 6t cms > {a(t) =" ()} 

which has sign diagram: + a(t) 

b When t=0, s(0)=1cm 

v(0) = —3 cms™! 

a(0) =0 cms™2 

the particle is 1 cm to the right of O, moving to the left at a speed of 3 cms™1. 

¢ When t=2, s5(2)=8-6+1=3cm 

v(2)=12-3=9 cms* 

a(2) =12 cms™2 

the particle is 3 cm to the right of O, moving to the right at a speed of 9 cms™*. 

Since @ and v have the same sign, the speed of the particle is increasing.  
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d  Since v(t) changes sign when ¢ = 1, a change of direction occurs at this instant. 

s(1)=1-3+1=—1, so the particle changes direction when it is 1 cm to the left of O. 

e =3 = 
position 

-1 0 1 2 3 
origin 

f Speed is increasing when v(t) and a(t) have the same sign. This is for ¢ > 1. 

  

EXERCISE 18D 

1 An object moves in a straight line with position from O given by s(t) = t* — 6t +7 m, where 

t is in seconds, t > 0. 

a Find expressions for the object’s velocity and acceleration, and show sign diagrams for each of 

them. 

Find the initial conditions and hence describe the motion at this instant. 

Find the position of the object when it changes direction. 

Draw a motion diagram for the object. 

® 
O 

A 
O 

During which time interval is the object’s speed decreasing? 

2 When a ball is thrown, its height above the ground is given by s(t) = 1.2 +28.1¢ — 4.9t> metres, 

where ¢ is the time in seconds. 

a From what distance above the ground was the ball released? 

b Find s/() and state what it represents. 

¢ Find the maximum height reached by the ball. 

d Find the ball’s speed: 

i when released il at t=2s iii at t=5s. 

3 A particle moves in a straight line with displacement function s(t) = 12t —2t3 — 1 cm where ¢ is 

in seconds, ¢ > 0. 

a Find velocity and acceleration functions for the particle’s motion. 

b Find the initial conditions, and interpret their meaning. 

¢ Find the times and positions when the particle reverses direction. 

d At what times is the particle’s: 

i speed increasing ii velocity increasing? 

e Draw a motion diagram for the particle. 

4 A particle has displacement function s(t) =4 —/t +1 m, where ¢ is in seconds, ¢t > 0. 

a Find the velocity and acceleration functions for the particle’s motion, and draw sign diagrams 

for each of them. 

b Find the initial conditions and interpret their meaning. 

n Describe the motion of the particle after 3 seconds. 

d Describe what is happening to the speed of the particle.
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A flotation device is thrown from a jetty into the water 

below. It takes k& seconds for the device to reach the 

water. The height of the device above sea level is given 

by s(t) = —4.9t> + 4.9t + 8 m, where ¢ is in seconds, 

0 <t <k seconds. < 

a Find the value of k. 

b Draw sign diagrams for the device’s velocity and 

acceleration functions. 

  

¢ Was the speed of the device increasing or decreasing after: 

i 0.2 seconds il 1 second? 

A particle P moves along the z-axis with position given by x(t) =1 —2cost cm, ¢ > 0 seconds. 

a State the initial position, velocity, and acceleration of P. 

b Describe the motion of P when t = % seconds. 

¢ Find the times when the particle reverses direction on 0 < ¢ < 27, and find the position of 

the particle at these instants. 

d  When is the particle’s speed increasing on 0 <t < 27? 

A dog paces back and forth along a fence, guarding its owner’s property. The dog’s horizontal 

displacement relative to its kennel is given by s(t) = 8sin£ m, ¢ > 0 seconds. 

a Is the dog to the left or the right of its kennel after: i 3 seconds il 7 seconds? 

b Find the velocity function v(t). 

¢ Is the dog moving to the left or the right after: i 4 seconds il 10 seconds? 

d  Find the acceleration function a(t). 

e Is the dog’s speed increasing or decreasing after 2 seconds? 

f Show that the dog’s speed is maximised when it is moving past its kennel. 

The velocity of an object after ¢ seconds is given by v(t) = 25te=* cms™!, t > 0. 

a Use technology to help sketch the velocity function. 

b Show that the object’s acceleration at time ¢ is given by a(t) = 25(1—2t)e~2* cms™2, ¢ > 0. 

¢ When is the velocity of the object increasing? 

d  When is the speed of the object decreasing? 

A lion is chasing a zebra. The zebra notices the lion when the lion is 40 m away. From this time, 

the lion approaches with speed v;(t) = 15¢7%!* ms~!, and the zebra runs away with speed 

va(t) =20 — 20e0H ms~L 

a Find the speed of each animal after 1 second. 

b Show that the lion’s speed decreases over time, whereas the zebra’s speed increases over time. 

3 
¢ Find / vi(t) dt, and interpret your answer. 

0 
3 

d Find / [v1(t) — vo(t)] dt, and interpret your answer. 
0 

e Explain why the lion will be closest to the zebra when vy (t) = va(t). 

Find the time at which vy (¢) = va(%). 

g Did the lion catch the zebra? If not, how close did the lion get to the zebra?
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INVESTIGATION 

A projectile is an object upon which the only force acting is gravity. If we ignore air resistance, 

balls and missiles travel through the air with projectile motion. 

For example, the trebuchet at Warwick Castle T 

in England is claimed to be the largest 

working siege machine in the world. It is 

constructed mainly of oak, with the long 

throwing arm made of ash, a more flexible 

wood. It is 8.7 m high, increasing to 18 m 

high with the arm fully extended. Using a 

counterweight of approximately 6 tonnes, it 

is capable of throwing an 18 kg projectile a 

horizontal distance of up to 242 m. 

  

The theory of projectile motion was developed in Europe in the 14th century, driven by the desire 

to improve guns and cannons. At that time, scientists were still using Aristotle’s theory of motion 

which suggested that forces gave rise to momentum. This would mean that as soon as you stopped 

pushing something (even an object on wheels) it would stop moving. 

It was Galileo Galilei (1564 - 1642) who first suggested that in the absence 

of resistance, a projectile would move in a quadratic curve. 

Within his research he conducted a series of experiments on the paths of 

projectiles, attempting to find a mathematical description of falling bodies. 

Two of Galileo’s experiments consisted of rolling a ball down a grooved 

ramp that was placed at a fixed height above the floor and inclined at a 

fixed angle to the horizontal. In one experiment the ball left the end of 

the ramp and descended to the floor. In the second, a horizontal shelf was 

placed at the end of the ramp, and the ball travelled along this shelf before Galileo 

descending to the floor. 

  

In both experiments Galileo found that once the ball left the ramp or shelf, its path was parabolic 

and could therefore be modelled by a quadratic function. 

In this Investigation we suppose you are operating a cannon. Your task is to fire the cannonball as 

far as possible. At what angle to the ground should you fire the cannonball? 

e If the angle is too high, the cannonball will e If the angle is too low, the cannonball will 

go high into the air, but will not travel very reach its maximum height too soon, and will 

far horizontally. not travel very far. 

height 

     distance distance
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Suppose the cannonball is fired at an angle 6 to the height 

ground, with initial velocity vg ms~!. The motion 

of the cannonball has both a vertical component 

and a horizontal component. We will consider o : 

these components separately. i vertical component 

  

distance 
<— horizontal —> 

component 

What to do: 

1 a Ifthe cannon is fired from ground level, what is the initial vertical height of the cannonball? 

b Use the diagram above to show that the initial vertical velocity of the cannonball is 

vosinf msL. 

¢ The path of the cannonball is affected by gravity, which acts downwards on the cannonball 

at a rate of 9.8 ms—2. 
Explain why the vertical acceleration of the cannonball is given by a(t) = —9.8 ms=2. 

d Show that the vertical displacement function s(t) = —4.9t> + [vgsin 6]t satisfies the 
properties in a, b, and ¢. 

e Hence show that the cannonball takes 2 sl   seconds to hit the ground. 

2 a Show that the horizontal velocity of the cannonball 

is vpcosf msL. 
The horizontal velocity is 

not affected by gravity, so it 

b Hence show that the horizontal distance travelled | remains constant throughout 

  

by the cannonball before it hits the ground is the cannonball’s flight. 

v02 sin 260 
~ o3 metres. 

¢ Suppose a cannonball is fired with initial velocity 

200 ms~!. Find the horizontal distance travelled ’ 

by the cannonball if it is fired at an angle of: 

i 20° ii 50° il 80° 

d Find the angle & which maximises the range of the cannonball. 

3 Click on the icon to run a cannon simulation. SIMULATION 

Change the initial velocity and angle of trajectory, and observe the effect these 

have on the path of the cannonball. 

Use the simulation to check that your answer to 2 d is correct. 

REVIEW SET 18A 

1 An object travels with displacement function s(t) =12 —2tm for 0 <t < 10s. 

  

a Find the initial displacement of the object. 

b Find the displacement of the object at time: 

i t=1s ii t=3s. 

At what time does the object reach the origin? 

o 
a 

Does the object ever change direction? Explain your answer. 

e Draw a motion diagram showing the information you have found.
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2 A particle moves in a straight line with displacement from O given by s(t) =2t>+¢t—5 cm 

at time ¢ seconds, t > 0. 

a Find the average velocity from ¢ =1 to ¢t =5 seconds. 

b Find the instantaneous velocity at: 

i t=2 seconds ii t=4 seconds. 

¢ Find the acceleration function a(t). 

3 A particle P moves in a straight line with position relative to the origin O given by 

s(t) = 2t> — 91 + 12t — 5 cm, where ¢ is the time in seconds, ¢ > 0. 

a Find the velocity and acceleration functions, and draw a sign diagram for each. 

Find the initial conditions. 

Describe the motion of the particle at time ¢ = 2 seconds. 

Find the times and positions where the particle changes direction. 

Draw a diagram to illustrate the motion of P. 

- 
0 

O 
an 

O 

Determine the time intervals when the particle’s speed is increasing. 

& A particle moves in a straight line with velocity v(t) =t — 6t +8 ms~!, ¢ > 0 seconds. 

Draw a sign diagram for v(t). 

Describe what happens to the particle in the first 5 seconds of motion. 

After 5 seconds, how far is the particle from its original position? 

Q 
a 

O 
o 

Find the total distance travelled in the first 5 seconds of motion. 

5 When a kayaker stops paddling, the velocity of 

the kayak in the following 6 seconds is given by 

v(t) = 2.75 —t + 0.5t42 ms™!, where ¢ is the 
time in seconds. 

a Find the velocity of the kayak: 

i when the kayaker stops paddling 

ii after 3 seconds. 

  

b Show that the kayak’s speed is decreasing during the 6 second period. 
2 

¢ Find / v(t)dt and interpret your answer. 
0 

60 
  6 A particle P moves in a straight line with position from O given by s(t) = 15t — 

where t is the time in seconds, ¢ > 0. 

cm, 
(t+1)2 ’ 

a Find velocity and acceleration functions for P’s motion. 

b Describe the motion of P at ¢ =3 seconds. 

¢ For what values of ¢ is the particle’s speed increasing? 

7 A spotlight moves back and forth across a stage at a concert. Its position after ¢ seconds is 

given by x(t) = 3 + 2sin7t m. 

a Find the initial position, velocity, and acceleration of the spotlight. 

b Find the times when the spotlight changes direction during 0 < ¢ < 5 seconds. 

¢ Find the total distance travelled by the spotlight in the first 5 seconds.
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8 A particle has velocity function v(t) = 2cos4t ms™1. 

a Show that the particle oscillates between two points, and find the distance between them. 

b Given that s(%) =6 m, determine s(%). 

¢ Find the total distance travelled by the particle in the first 7 seconds. 

9 When an aeroplane lands, its velocity is 65 ms~—. 

given by a(t) = —2 ms~2, 

Its acceleration ¢ seconds after landing is 

a Find the velocity v(¢) of the plane ¢ seconds after landing. 

b Find the displacement s(t) of the plane ¢ seconds after landing. 

¢ i How long will it take the plane to reduce its speed to 3 ms™—1? 

ii How far would the plane have travelled along the runway at this time? 

10 A boat travelling in a straight line has its engine turned off at time ¢ = 0. Its velocity at time 

t seconds thereafter is given by v(t) = T ?2)2 ms~—! 

a Find the initial velocity of the boat, and its velocity 

after 3 seconds. 

  

b Discuss v(t) as t — oo. 

¢ Sketch the graph of v(t) against ¢. 

  

2 
d Find / v(t) dt, and interpret your answer. 

0 
e From when the engine is turned off, how long will it take for the boat to travel 30 metres? 

REVIEW SET 18B 

1 An object moves in a straight line with displacement function s(¢) = ¢? 4+ 4¢ + 1 m, where 

t is in seconds, ¢ > 0. 

a Find the initial position of the object. 

b Find the average velocity from ¢ =1 to ¢t =3 seconds. 

¢ Find v(¢). 

d Find the instantaneous velocity at ¢ =1 second. 

  

  

  

    

  

2 A jogger has the velocity-time graph shown. A velocity (ms—1) 

Find the total distance travelled by the 8 

jogger. 6 

4 

2 

0 
              

0 10 20 30 40 50 60 
time (s) 

3 Attime t =0 a particle passes through the origin with velocity 27 cms~!. Its acceleration 

t seconds later is 6t — 30 cms™2. 

a Write an expression for the particle’s velocity. 

b Calculate the displacement from the origin after 6 seconds.
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4 A particle moves along the z-axis with position relative to origin O given by 

x(t) = 3t — ty/t cm, where t is the time in seconds, t > 0. 

a Find the velocity and acceleration functions, and draw a sign diagram for each. 

b Find the initial position and velocity of the particle and hence describe the motion at that 

instant. 

Describe the motion of the particle at ¢ = 2 seconds. 

Find the time and position when the particle reverses direction. 

Determine the time interval when the particle’s speed is decreasing. 

Draw a motion diagram for the particle. 

g Find the distance travelled by the particle in the first 6 seconds of motion. 

5 The velocity of a human cannonball is given by 

v(t) = 4.8t2—0.8t> ms~! for 0 <t <6 seconds. 

a Find the acceleration of the human cannonball 

after: 

i 1 second ii 2 seconds 

iiil 4 seconds iv 5 seconds. 

  

3 
b Find / v(t)dt and interpret your answer. 

0 

¢ How long does it take for the human cannonball 

to travel 30 m? 

t 

A particle P moves in a straight line with position given by s(t) = 80e 1 — 40t m, 

t >0 seconds. 

a Find the velocity and acceleration functions. 

b Find the initial position, velocity, and acceleration of P. 

¢ Sketch the graph of the velocity function. 

d Find the exact time when the velocity is —44 ms~*. 

A cork bobs up and down in a bucket of water. The distance - 
from the centre of the cork to the bottom of the bucket is given by » - 

s(t) =30 +cost cm, t >0 seconds. n 

a Find the cork’s velocity at times ¢ = 0, %, 1, 1%, and 

2 seconds. 

b Find the time intervals when the cork is falling. 

A skier is travelling down a hill. Her velocity after ¢ seconds is given by 
1.1 1.5 

o(t) = @ira = 
10 

Find the velocity of the skier after 4 seconds. 

=il 

Write an expression for the acceleration of the skier after ¢ seconds. 

Find the acceleration of the skier after 2 seconds. 

Q 
an 
O
 o
 

Use technology to find the total distance travelled by the skier in the first 10 seconds.
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9 A feather is falling with velocity function v(t) = —55t3 — 5t ms~L. 
2 metres above the ground. 

The feather is initially 

a Find the displacement function s(¢). 

b Find the time taken for the feather to reach the ground. 

10 Tyson and Maurice are competing in a 100 m sprint. Tyson runs with speed 

vi(t) = 10(1 — e~ +?%) ms~!, and Maurice runs with speed vs(t) = 10.5(1 — ™) ms™1, 
for ¢ > 0 seconds. 

a Who is travelling faster after 2 seconds? 
5 

b Find / vy (t)dt, and interpret your answer. 
0 

Find displacement functions s (¢) and s»(t) for each sprinter. 

Who is winning the race after 3 seconds? 

Show that Tyson completes the 100 m in approximately 10.8 seconds. 

- 
0 
O
 A
 

Who will win the race?



  

Bivariate statistics 

Contents: 

  

A 

m
o
n
N
n
 

Association between numerical 
variables 

Pearson’s product-moment 
correlation coefficient 
Line of best fit by eye 

The least squares regression line 

The regression line of = against y
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  OPENING PROBLEM 

At a junior tournament, some young athletes each throw a discus. The age and distance thrown are 

recorded for each athlete. 

| dmlee_ [A[B[C[D[E[F|G[H|[I]J]|K]L 
Age (years) 121616181319 11]10|20|17]15]13 
  

  

Things to think about: 

a Do you think the distance an athlete can throw is related to the person’s age? 

b What happens to the distance thrown as the age of the athlete increases? 

¢ How could you graph the data to more clearly see the relationship between the variables? 

d How can we measure the relationship between the variables? 

In the Opening Problem, each athlete has had rwo variables (age and distance thrown) recorded about 

them. This type of data is called bivariate data. We study it to understand the relationship between the 

two variables. 

        

    
      

For example, we expect the distance thrown will depend on 

the athlete’s age, so age is the independent variable and 

disance thrown is the dependent variable. 

The independent and 

dependent variables 

are sometimes called 

the explanatory and 

response variables 

respectively. 

In this Chapter we describe and model relationships between pairs of numerical variables. 

A ETWEEN 
RIABLES 

We can observe the relationship between two numerical variables using a scatter diagram. We usually 

place the independent variable on the horizontal axis, and the dependent variable on the vertical axis. 

In the Opening Problem, the independent variable age   

  

  

  

  

  

  

  

      

. . . 60 rstance thrown (m) 
is placed on the horizontal axis, and the dependent 

variable distance thrown is placed on the vertical axis. 50 ° 
° 

We then graph each data value as a point on the 20 

scatter diagram. For example, the red point represents L ® 

athlete H, who is 10 years old and threw the discus 30 ° 

15 metres. ° 
° 

From the general shape formed by the dots, we can see 20 s = 

that as the age increases, so does the distance thrown. =L . ° age .(years)- 
>               

10 12 14 16 18 20
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CORRELATION 

Correlation refers to the relationship or association between two numerical variables. 

There are several characteristics we consider when describing the correlation between two variables: 

direction, linearity, strength, outliers, and causation. 

  

DIRECTION 

4 o o For a generally upward trend, we say that the correlation is positive. 

o o, 00 An increase in the independent variable generally results in an 

o5 ° increase in the dependent variable. 
o 

4 o For a generally downward trend, we say that the correlation is 

M ° negative. An increase in the independent variable generally results 

S o in a decrease in the dependent variable. 

  

  

4 For randomly scattered points, with no upward or downward trend, 

° ° ° we say there is no correlation. 
o ° ° ° oo o ° 

o o o 
° ° o o 

LINEARITY 

When a trend exists, if the points approximately form a straight line, we say the trend is linear. 

These points are roughly linear. These points do not follow a linear trend. 

   
STRENGTH 

To describe how closely the data follows a pattern or trend, we talk about the strength of correlation. It 

is usually described as either strong, moderate, or weak. 

strong moderate weak 

A A A 
° o o ° o 

o, ° ° o ° ° ° ° 

o, ° e o oo o o e oo 

o o 2~ o ° ° ° 
o ° o o o o o 

° ° ° 
-_— G E— -_— G 

strong positive moderate positive weak positive 

A A A 
o o o ° 

o o (K o o ° ° 

o 4 o o o ° o 

o o o o ° ° ° 

o ° o ° ° o 

o 

-G - -       
strong negative moderate negative weak negative
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OUTLIERS 

Outliers are isolated points which do not follow the trend outlier 

formed by the main body of data. 

If an outlier is the result of a recording or graphing error, it 

should be discarded. However, if the outlier is a genuine piece 

of data, it should be kept. 

  

  

  

  

  

  

  

  

  

  

  

    

For the scatter diagram of the data in the Opening 605 distance thrown ™) 

Problem, we can say that there is a strong positive { 

correlation between age and distance thrown. The 50 — 

relationship appears to be linear, with no outliers. l - 

0 | = 

—t= 
. ° 

20 — L o 

< = I age (years)| 
A - >           

10 12 14 16 18 20 

CAUSALITY 

Correlation between two variables does not necessarily mean that one variable causes the other.   
For example: 

e The arm length and running speed of a sample of young children were measured, and a strong, 

positive correlation was found between the variables. 

This does not mean that short arms cause a reduction in 

running speed, or that a high running speed causes your arms 

to grow long. 

Rather, there is a strong, positive correlation between the 

variables because both arm length and running speed are 

closely related to a third variable, age. Up to a certain age, 

both arm length and running speed increase with age. 

e The number of television sets sold in London and the number 

of stray dogs collected in Boston were recorded over several 

years. A strong, positive correlation was found between the 

variables. 

Obviously the number of television sets sold in London was 

not influencing the number of stray dogs collected in Boston. 

It is coincidental that the variables both increased over this 

period of time. 

  
If a change in one variable causes a change in the other variable then we say that a causal relationship 

exists between them. In these cases, we can say that the independent variable explains the dependent 

variable. It may be more natural to use the terminology explanatory variable and response variable. 

In cases where a causal relationship is not apparent, we cannot conclude that a causal relationship exists 

based on high correlation alone.
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EXERCISE 19A 

1 For each scatter diagram, describe the relationship between the variables. Consider the direction, 

linearity, and strength of the relationship, as well as the presence of any outliers. 

    

  

a b 4y, c Ay 
oy o ° o ° 4 

o: . o ° ° 

o ° ° . 
3 o 
.. ° ° 

° o o ° 

- - 

d e Ay o f 4y o . 

... ... 

©0eo o 
° o 

..o °o ° ° 
o ©°9%0 . ° 

:..‘ : ° 

—  » T —  » T 

2 Tiffany is a hairdresser. The table below shows the number of hours she worked each day last week, 

and the number of customers she had. 

Hours worked 

Number of customers 

a Which is the explanatory variable, and which 

is the response variable? 

b Draw a scatter diagram of the data. 

¢ On which two days did Tiffany: 

  

  

  

You can use technology to 

help draw scatter diagrams. 

  

i work the same number of hours = =) 

ii have the same number of customers? ) 

1 iti GRAPHICS d Explam' why you would expect a positive cSRaPHICS \/ 
correlation between the variables. INSTRUCTIONS 

3 The scores awarded by two judges at an ice skating competition are shown in the table. 

Competltar 

Judge A 6.5 
  

  

fl-fl---- 
a Construct a scatter diagram for the data, with Judge A’s scores on the horizontal axis and 

Judge B’s scores on the vertical axis. 

b Copy and complete the following comments about the scatter diagram: 

There appears to be ...... - R correlation between Judge A’s scores and Judge B’s scores. 

This means that as Judge A’s scores increase, Judge B’s scores ...... 

¢ Would it be reasonable to conclude that an increase in Judge A’s scores causes an increase in 

Judge B’s scores? Explain your answer.
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4 Paul owns a company which installs industrial air conditioners. The table below shows the number 

of workers at the company’s last 10 jobs, and the time it took to complete the job. 

Number of workers 

  

  

  

-flfl---- 
a Which job: i took the longest ii involved the most workers? 

b Draw a scatter diagram to display the data. 

¢ Describe the relationship between the variables number of workers and time. 

5 Choose the scatter diagram which would best illustrate the relationship between the variables x and y. 

a x = the number of apples bought by customers, y = the total cost of apples bought 

bz = the number of pushups a student can perform in one minute, 

y = the time taken for the student to run 100 metres 

¢z = the height of a person, y = the weight of the person 

d 2 = the distance a student travels to school, y = the height of the student’s uncle 

D 4y 

     
  

  

  

  

  

    

6 The scatter diagram shows the marks obtained by 604 marks o 
students in a test out of 50 marks, plotted against 

the number of hours each student studied for the 50 ° 
o 

test. 40 o o ° 
° 

a Describe the correlation between the o °06 % o 

variables. 30 ° * ° 
b How should the outlier be treated? Explain 2 . o ° 

your answer. 

¢ Do you think there is a causal relationship 10 
between the variables? Explain your answer. “‘HPber of hours of study             0   = 

0 2 4 6 8 10 12 

7 When the following pairs of variables were measured, a strong, positive correlation was found 

between each pair. Discuss whether a causal relationship exists between the variables. If not, 

suggest a third variable to which they may both be related. 

a The lengths of one’s left and right feet. 

b The damage caused by a fire and the number of 

firefighters who attend it. 

¢ A company’s expenditure on advertising, and the 

sales they make the following year. 

d The heights of parents and the heights of their adult 

children. 

  
e The numbers of hotels and numbers of service stations in rural towns.



BIVARIATE STATISTICS (Chapter 19) 455 
  

-MOMENT 
EFFICIENT 

In the previous Section, we classified the strength of the correlation between two variables as either 

strong, moderate, or weak. We observed the points on a scatter diagram, and judged how clearly the 

points formed a linear relationship. 

Since this method is subjective and relies on the observer’s opinion, it is important to get a more precise 

measure of the strength of linear correlation between the variables. We achieve this using Pearson’s 

product-moment correlation coefficient 7. 

For a set of n data given as ordered pairs (z1, y1), (22, ¥2), (@3, ¥3)s wos (Tns> Yn)s 

Y(z—T)(y—7) 
V2 (z—%)? ) (y —9)? 

where T and 7 are the means of the = and y data respectively, and ) | means the sum over 

all the data values. 

Pearson’s product-moment correlation coefficient is r = 

You are not required to learn this formula, but you should be able to calculate 

the value of r using technology. 
GRAPHICS 

CALCULATOR 
INSTRUCTIONS 

  HISTORICAL NOTE 

Karl Pearson (1857 - 1936) was an English statistician who developed the product-moment 

correlation coefficient together with his academic advisor Sir Francis Galton. 

Pearson made many other contributions to statistics including the use of histograms in exploratory 

data analysis, parameter estimation, and hypothesis testing. 

He is considered a key figure in the development of mathematical statistics. 

PROPERTIES OF PEARSON’S PRODUCT-MOMENT CORRELATION 
COEFFICIENT 

e The values of 7 range from —1 to +1. 

e The sign of r indicates the direction of the correlation. 

» A positive value for r indicates the variables are positively correlated. 

An increase in one variable results in an increase in the other. 

> A negative value for r indicates the variables are negatively correlated. 

An increase in one variable results in a decrease in the other. 

> If r =0 then there is no correlation between the variables. 

o The size of r indicates the strength of the correlation. 

> A value of 7 close to +1 or —1 indicates strong correlation between the variables. 

> A value of r close to zero indicates weak correlation between the variables.
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The following table is a guide for describing the strength of linear correlation using r. 

Positive correlation Negative correlation 

perfect perfect 

positive negative 

correlation correlation 

very strong very strong 

positive o negative 

correlation correlation 

strong strong 

positive negative 

correlation correlation 

moderate ° moderate 

positive negative 

correlation correlation 

weak weak 

positive negative 

correlation correlation 

very weak very weak 

positive negative 

correlation correlation   
Example | Self Tutor 

The Department of Road Safety wants to know if average speed (km h™1) 

there is any association between average speed in 

the metropolitan area and the age of drivers. They 

commission a device to be fitted in the cars of drivers 

of different ages. 

The results are shown in the scatter diagram. 

The r-value for this association is +0.027. 

Describe the association. 

  

20 30 40 50 60 70 80 90 
age (years) 

Since 0 <7 < 0.5, there is a very weak positive correlation between the two variables. 

We observe this in the graph as the points are randomly scattered.    
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Example 2 '1>)) Self Tutor 

The botanical gardens have been trying a new chemical to control the number of beetles infesting 

their plants. The results of one of their tests are shown in the table. 

  

Quantity of chemical (g) | Number of surviving beetles 

  

A 2 11 

B 5 6 

© 6 4 

D 3 6 

E 9 3 
  

a Draw a scatter diagram for the data. 

b Determine the correlation coefficient 7. 

¢ Describe the correlation between the quantity of chemical and the number of surviving beetles. 

We first enter the data into separate lists: 

Casio fx-CG50 TI-84 Plus CE HP Prime 
NORMAL FLOAT AUTO REAL RADIAN MP n Statistics 2Var Numeric View 

  

    

  

  

  

  

  

                    
          

  

Enter value or expression 
Edit | More [ GoTo | Sort | Make | Stats 

  

TI-84 Plus CE HP Prime 
NORMAL FLOAT AUTO REAL RADIAN MP 

   b Casio fx-CG50 TI-84 Plus CE 

B T T T T T 
i o | s ] LinearReg (ax+b) T 

a =-0.9666666 -0.858905872751 
b =10.8333333 yzaxth 0737719298246 a=-0. 9666666667 
r =-0.8589058 b=10. 83333333 r2=0.73771929 L 

MSe=3 382222222 riTe-raTLase 
y=ax+b 

  

  COPY       
      

So, r~ —0.859. 

¢ There is a moderate negative correlation between the quantity of chemical used and the number 

of surviving beetles. 

In general, the more chemical that is used, the fewer beetles that survive.    
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EXERCISE 19B 
  

  

    

  

  

  

  

  

  

        

1 In a recent survey, the Department of International 54 export earnings (§million) 
Commerce compared the number of employees of a 

company with its export earnings. A scatter diagram 4 T o | | 

of their data is shown alongside. The corresponding 

value of  is 0.556. 3 . 
Describe the association between the variables. ) ° 

° 

° 
° 

° 
1 o 

0 number of employees             
0 10 20 30 40 50 60 70 >80 

2 Match each scatter diagram with the correct value of . 

  

    

a AY b AY 7 c 
.. ; 

.'! ; 
-¢' 

l,'. 

-—p——» - 

\ v 

d 4y e 4y 

v \ 

A r=1 B r=06 C r=0 D r=-07 E r=-1 

3 For each of the following data sets: 

i Draw a scatter diagram for the data. 

il Calculate Pearson’s product-moment correlation coefficient r. 

iii  Describe the linear correlation between z and y. 

afal1[2]3]4[5]6] ble|3[8]5]14]19[10]16] 
[v[3]2[5]5]0[6] [v]rrfi2fis]6]1]10]4]    

  

  

L A selection of students was asked 

how many phone calls and text 

messages they received the previous TPhone calls recetv.ed 7 

day. The results are shown alongside. nn...u.. 

a Draw a scatter diagram for the data. b Calculate . 

  

¢ Describe the linear correlation between phone calls received and text messages received. 

d Give a reason why this correlation may occur.
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5 Consider the Opening Problem on page 450. 

a Calculate r for the data. 

b Hence describe the association between the variables. 

6 Jill does her washing every Saturday and hangs her clothes out to dry. She notices that the clothes 

dry faster some days than others. She investigates the relationship between the temperature and the 

time her clothes take to dry: 
  

  

Temperature (z°C) | 25 [ 32|27 [39]35] 24 [30]36]29] 35 

Drying time (y minutes) | 100 | 70 [ 95 | 25 | 38 [ 105 [ 70 | 35 | 75 | 40                       

a Draw a scatter diagram for the data. 

b Calculate r. 

¢ Describe the correlation between temperature and drying time. 

7 This table shows the number of supermarkets in 10 towns, and the number of car accidents that 

have occurred in these towns in the last month. 

Number of supermarkets | 5 | 8 12| 716 | 2 |15 10| 713 

Number of car accidents | 10 | 13 | 27 | 19 [ 10 | 6 | 40 | 30 | 22 | 37 

Draw a scatter diagram for the data. 

  

  

  

Calculate 7. 

Identify the outlier in the data. 

Q 
a 

T 
o 

It was found that the outlier was due to an error in the data collection process. 

i Recalculate r with the outlier removed. 

ii Describe the relationship between the variables. 

iii Discuss the effect of removing the outlier on the value of r. 

e Do you think there is a causal relationship between the variables? Explain your answer. 

8 A health researcher notices that the incidence of Multiple Sclerosis (MS) is higher in some parts of 

the world than in others. 

To investigate further, she records the latitude and incidence of MS per 100 000 people of 20 countries. 

latztude (degrees) 55 | 25 |41 (22| 47 | 37 | 56 | 14 | 34 | 25 

MS mczdence per 100000 | 165 | 95 [ 75 | 20 | 180 | 140 | 230 | 15 | 45 | 65 

latztude (degrees) 27 | 65 | 10 | 24 56 | 46 50 

MS mczdence per 100000 | 30 | 140 15 290 | 95 160 | 105 

  

  

a Draw a scatter diagram for the data. Higher latitudes occur near 

b Calculate the value of r. the poles. Lower latitudes 

¢ Describe the relationship between the variables. occur near the equator. 

d Is the incidence of MS higher near the equator, or 

near the poles? 
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ACTIVITY 1   

In this Activity, you will explore the relationship between the height and foot length of the students 

in your class. 

You will need: ruler, tape measure 

What to do: 

1 Predict whether there will be positive correlation, no correlation, or negative correlation between 

the height and foot length of the students in your class. 

2 Measure the height and foot length of each student in 

your class. Record your measurements in a table like 

the one below: 

   
Use technology to draw a scatter diagram for the data. 

Calculate Pearson’s product-moment correlation coefficient r for the data. 

Describe the relationship between height and foot length. Was your prediction correct? 

o
 

u
1
 

W
 

Do you think that a high value of r indicates a causal relationship in this case? 

' BY EYE 
If there is a sufficiently strong linear correlation between two variables, we can draw a line of best fit to 

illustrate their relationship. In general, it is only worth drawing a line of best fit if the correlation between 

the variables is strong. There is no fixed rule, but we suggest that a line of best fit is not appropriate if 

[r] <0.85. 

If we draw the line just by observing the points, we call it a line of best fit by eye. This line will vary 

from person to person. 

We draw a line of best fit connecting variables = and y as follows: 

Step I:  Calculate the mean of the = values 7, and the mean of the y values 7. 

Step 2: Mark the mean point (T, y) on the scatter diagram. 

Step 3: Draw a line through the mean point which fits the trend of the data, and so that about the 

same number of data points are above the line as below it. 

Consider again the data from the Opening Problem: 

Age(years) 16 181319102017 15] 13 
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We have seen that there is a strong positive linear 

correlation between age and distance thrown. 

We can therefore model the data using a line of 

best fit. 

The mean age is 15 years and the mean distance 

thrown is 29 m. We therefore draw our line of 

best fit through the mean point (15, 29). 

We can use the line of best fit to estimate the 

value of y for any given value of z, and vice 

versa. 

We draw the line through the mean point 

so it follows the trend of the data and 

there are about the same number of 

points above the line as below the line. 

  

& 

  

604 distance (m) 

55   

  

45   

     40 

mean poin     
35   

  30 

25   

  20 

15                 age (years) 
N 

10 12 14 16 18 20 

INTERPOLATION AND EXTRAPOLATION 

Consider the data in the scatter diagram 

alongside. The data with the highest and lowest 

values are called the poles. 

The line of best fit for the data is also drawn 

on the scatter diagram. We can use this line 

to predict the value of one variable for a given 

value of the other. 

e If we predict a y value for an x value 

in between the poles, we say we are 

interpolating in between the poles. 

e If we predict a y value for an = value 

outside the poles, we say we are 

extrapolating outside the poles. 

   
   

    

upper pole 

    
/| 

lower pole 

  

x 
T T > 
— 

extrapolation i interpolation i extrapolation 

' 
The accuracy of an interpolation depends on how well the linear model fits the data. This can be gauged 

by the correlation coefficient and by ensuring that the data is randomly scattered around the line of best 

fit. 

The accuracy of an extrapolation depends not only on how well the model fits, but also on the assumption 

that the linear trend will continue past the poles. The validity of this assumption depends greatly on the 

situation we are looking at.
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For example, consider the line of best fit for the data in the Opening Problem. It can be used to predict 

the distance a discus will be thrown by an athlete of a particular age. 

The age 14 is within the range of ages Discus throws 
. - e 1604 gistance (in 
in the original data, so it is reasonable to distance (m) 

predict that a 14 year old will be able to ~ 140[~ 

throw the discus 26 m. 

  

  

  

  

  

  However, it is unlikely that the linear 

trend shown in the data will continue 100 

far beyond the poles. For example, 80 

according to the model, a 50 year old 

might throw the discus 144 m. This is 60 

  

  

  

  

  

  

  

  

    
                        

almost twice the current world record 20 o 

of 76.8 m, so it would clearly be an ~OR 

unreasonable prediction. oo T . o 

00 5 10 /15 20 25 30 35 40 45 50 55 

14 age (years) 

Example 3 l1>)) L AR (T 

On a hot day, six cars were left in the 

sun in a car park. The length of time 

each car was left in the sun was recorded, - 

as well as the temperature inside the car Temperature (y °C) 

at the end of the period. 

  

a Calculate 7 and 7. b Draw a scatter diagram for the data. 

¢ Locate the mean point (T, J) on the scatter diagram, then draw a line of best fit through 

this point. 

d Predict the temperature of a car which has been left in the sun for 35 minutes. 

e Predict how long it would take for a car’s temperature to reach 55°C. 

f Comment on the reliability of your predictions in d and e. 

50 +5+25+40+15+45 - _ AT+428+36+42+34+41 oo _30, oYW H36+24344 
=38   

  

  

  

  

  

                    - 0 1 0 Y ) 
0 10 20 30 35 40 50 60 70 ~75 80 

2 (minutes)    
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d When x =35, y~40. 

The temperature of a car left in the sun for 35 minutes will be approximately 40°C. 

e When y =055 z~T75. 

It would take approximately 75 minutes for a car’s temperature to reach 55°C. 

f The prediction in d is reliable, as the data appears linear, and this is an interpolation. 

The prediction in € may be unreliable, as it is an extrapolation and the linear trend displayed 

by the data may not continue beyond the 50 minute mark. 

  

EXERCISE 19C 

1 Consider the data set: [ 5 [12[20[17[10] 8 [25] 15 | 

s [0 [1s[2[20] 7 [10] 
Draw a scatter diagram for the data. 

  

Does the data appear to be positively or negatively correlated? 

Calculate r for the data. 

Describe the strength of the relationship between = and y. 

Calculate the mean point (T, 7). 

- 
0 

O 
aAn

 
O 

o 

Locate the mean point, then use it in drawing a line of best fit. 

Estimate the value of y when x = 22. 

2 Fifteen students were weighed and their pulse rates were measured: 

i [ 57 [ [oa [ [0 2505 [ B[ [ 0] 

  

[65 59 54 74 o0 57 [o1 [ 59 0 [0 75 [o0 [ [ 8 55 
Draw a scatter diagram for the data. b Calculate . 

Describe the relationship between weight and pulse rate. 

Calculate the mean point (7T, 7). 

Locate the mean point on the scatter diagram, then use it in drawing a line of best fit. 

- 
0 

O 
A 

o 

Estimate the pulse rate of a 50 kg student. Comment on the reliability of your estimate. 

3 The trunk widths and heights of the trees in a garden are given below: 

[ [ o s o[ s [ [ar ) 
18 | 24 30 22|21 

      

  

Draw a scatter diagram for the data. 

b Which of the points is an outlier? 

¢ How would you describe the tree represented by the 

outlier? 

d Calculate the mean point (T, 7). 

e Locate the mean point on the scatter diagram, then 

draw a line of best fit through the mean point. 

f Predict the height of a tree with trunk width 120 cm. 

Comment on the reliability of your prediction. 

g Predict the trunk width of a tree with height 10 m. 

Comment on the reliability of your prediction.  
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I3 0 THE LEAST SQUARES REGRESSION LINE 
The problem with drawing a line of best fit by eye is that the line drawn will vary from one person to 

another. For consistency, we use a method known as linear regression to find the equation of the line 

which best fits the data. The most common method is the method of “least squares”. 

In least squares linear regression, we minimise Y 
the sum of the squares of the vertical distances 

between each data point and the regression line. 

    $@n ) 
  

s]
Y 

In other words, we need to find the straight line y = ax + b where a and b are chosen to minimise 
n 

D=3 d2 
i=1 

(i —T)(yi —7) The required values of a and b are a = and b=7 —az. 
> (xi —T)? 

. . : LEAST SQUARES Click on the icon to see how these formulae are derived. T uARE 

1 1 1 1 STATISTICS In this course you will not Pe re'qulred to find the equation PACKAGE 

of the least squares regression line by hand. 

Instead, you can use your graphics calculator or the GRAPHICS 
o ge CALCULATOR 

statistics package. INSTRUCTIONS 

e ) Self Tutor 

  

The annual income and average weekly grocery bill for a selection of families is shown below: 

Income (x thousand pounds) | 55 | 36 [ 25 | 47 | 60 | 64 | 42 | 50 

Grocery bill (y pounds) 120 | 90 | 60 | 160 | 190 | 250 | 110 | 150 

Construct a scatter diagram to illustrate the data. 

  

Use technology to find the equation of the regression line. 

State and interpret the gradient of the regression line. 

Estimate the weekly grocery bill for a family with an annual income of £95000. 

Estimate the annual income of a family whose weekly grocery bill is £100. 

- 
0 

O 
an 

O 
o 

Comment on whether the estimates in d and e are likely to be reliable.    
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a  300g grocery bill (£) 

250 ° 

200 ° 

150 ° e 

° o 

100 5 

50 : 
income (£ thousands 

- 
0 10 20 30 40 50 60 70 

b Casio fx-CG50 TI-84 Plus CE 
B8 BERa NORMAL FLOAT AUTO REAL RADIAN MP n 

LinearReg(ax+b) — | - 
a =4.1782519 8 _ 
b =-56.694686 S Bars1967 

LinRegMs income, bill,1: CopyVar stat. RegEo> 4] 
“Title"  “Linear Regression (mx+b)" 

“RegEqn" "mrgb” r =0.89484388 b="-56.69468693 m 417825 r2=0.80074556 r2=0. 8007455697 
MSe=839.7744 r=0.8948438801 

y=ax+b 
-56.6947 

0.800746 

0.894844 

R    
Using technology, the regression line is y ~ 4.18x — 56.7 

¢ The gradient of the regression line ~ 4.18. This means that for every additional £1000 of 

income, a family’s weekly grocery bill will increase by an average of £4.18. 

d When z =95, y~ 4.18(95) — 56.7 ~ 340 

So, we expect a family with an income of £95000 to have a weekly grocery bill of 

approximately £340. 

e When y =100, 100~ 4.18x — 56.7 

156.7 ~ 4.18% {adding 56.7 to both sides} 

z =~ 37.5 {dividing both sides by 4.18} 

So, we expect a family with a weekly grocery bill of £100 to have an annual income of 

approximately £37 500. 

f The estimate in d is an extrapolation, so the estimate may not be reliable. 

The estimate in € is an interpolation and there is strong linear correlation between the variables. 

We therefore expect this estimate to be reliable.     
  

EXERCISE 19D 

1 Consider the data set below. 

[z Jwo]a]6[s8]o]s]7[1]2]3 

20| 6 [8[feofi2fafaf2]| 
a Draw a scatter diagram for the data. 

  

) 

     GRAPHICS 
CALCULATOR 
INSTRUCTIONS 

b Use technology to find the equation of the regression line, and plot the line on your calculator. 

¢ Use b to draw the regression line on your scatter diagram.
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Steve wanted to see whether there was any relationship between the temperature when he leaves for 

work in the morning, and the time it takes for him to get to work. 

He collected data over a 14 day period: 

(25 T2 27 [32 [ 35 [ 29 [ 27 [ 21 [ 15 [ 16 [ 17 [ 25 [ 1] 
55 [ [0 31 {57 [ o1 [ [ 2 6 [ 5[] 4[] 

a Draw a scatter diagram for the data. b Calculate 7. 

¢ Describe the relationship between the variables. 

  

d Ts it reasonable to fit a linear model to this data? Explain your answer. 

The prices of petrol and the number of customers per hour for sixteen petrol stations are: 

(7015 [ 019 [ 1109 [ 105 1129 
(s [ B[ B[00 
(1029 1105 [ 1069 [ 1055 [ 1065 

50 [ [ 21 [ % [ 1 

  

Calculate Pearson’s product-moment correlation coefficient for the data. 

Describe the relationship between the petrol price and the number of customers. 

State and interpret the gradient of the regression line. 

Estimate the number of customers per hour for a petrol station which sells petrol at 

115.9 cents per litre. 

a 

b 

¢ Use technology to find the equation of the regression line. 

d 

e 

f Estimate the petrol price at a petrol station which has 40 customers per hour. 

g Comment on the reliability of your estimates in e and f. 

To investigate whether speed cameras have an impact on road safety, data was collected from several 

cities. The number of speed cameras in operation was recorded for each city, as well as the number 

of accidents over a 7 day period. 

7 [15]20] 8 [16]17 28] 17]24]2520] 5 |16]25 1516 

  

5 i 25 e o 
Construct a scatter diagram to display the data. 

Calculate r for the data. 

Describe the relationship between the number of speed cameras and the number of car accidents. 

Find the equation of the regression line. 

State and interpret the gradient and y-intercept of the regression line. 

-
0
 

O
 

aAn
 
C
 
o
 

Estimate the number of car accidents in a city with 10 speed cameras. 

The table following contains information about the 

maximum speed and ceiling (maximum altitude obtainable) 

for nineteen World War II fighter planes. The maximum 

speed is given in kmh~?, and the ceiling is given in km.  
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Maximum speed | Ceiling Maximum speed | Ceiling Maximum speed | Ceiling       

  

670 

570 

440 

670 

700 

520   

  

  

  

  

a Draw a scatter diagram for the data. b Calculate . 

¢ Describe the association between maximum speed (x) and ceiling (y). 

d  Use technology to find the regression line, and draw the line on your scatter diagram. 

e State and interpret the gradient of the regression line. 

f Estimate the ceiling for a fighter plane with a maximum speed of 600 kmh~*. 

g Estimate the maximum speed for a fighter plane with a ceiling of 11 km. 

6 A group of children was asked the numbers of hours they spent exercising and watching television 

each week. 

4]1]8]7/10[3[3]2 
| Television (y hours per week) [ 12 [24 [5]9[ 1 [18[11] 16 

a Draw a scatter diagram for the data. b Calculate . 

¢ Describe the correlation between time exercising and time watching television. 

d Find the equation of the regression line, and draw the line on your scatter diagram. 

e State and interpret the gradient and y-intercept of the regression line. 

f 1 One of the children in the group exercised for 7 hours each week. How much television 

does this child watch weekly? 

ii  Use the regression line to predict the amount of television watched each week by a child 

who exercises for 7 hours each week. 

iii  Compare your answers to i and ii. 

7 The yield of pumpkins on a farm depends on the quantity of fertiliser used. 

o te e [ 1 [ 0 [0 w [ T ] 

  

Yi eld (y kg) 
  

Draw a scatter diagram for the data, and identify the outlier. 

What effect do you think the outlier has on: 

i the strength of correlation of the data ii the gradient of the regression line? 

Calculate the correlation coefficient: 

i with the outlier included ii without the outlier. 

Calculate the equation of the regression line: 

i with the outlier included ii without the outlier. 

If you wish to estimate the yield when 15 g per m? of fertiliser is used, which regression line 

from d should be used? Explain your answer. 

Can you explain what may have caused the outlier? Do you think the outlier should be kept 

when analysing the data?
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ACTIVITY 2 

Anscombe’s quartet is a collection of four bivariate data sets which 

have interesting statistical properties. 

It was first described in 1973 by the English statistician Francis 

Anscombe (1918 - 2001). At the time, computers were becoming 

increasingly popular in statistics, as they allowed for more large scale 

and complex computations to be done within a reasonable amount of 

time. However, many common statistical packages primarily performed 

numerical calculations rather than produce graphs. Such output was 

often limited to those with advanced programming skills. 

In his 1973 article, Anscombe stressed that: 

  

“A computer should make both calculations and graphs. Both 
. . i . Francis Anscombe 

sorts of output should be studied; each will contribute to Photo courtesy of 

understanding.” Yale University. 

The data values for Anscombe’s quartet are given in the tables below: 

  

  

            

Data set A: 

x 13 9 11 14 6 4 12 7 5 

804 695 7.58 [ 881 [ 833 (996 | 7.24 | 4.26 | 10.84 | 4.82 | 5.68 

Data set B: 

      
  

  

nnnnnnn 

Enter the data into your graphics calculator or click on the icon to access the data in ~ STATISTICS 

  

. PACKAGE 
the statistics package. 

What to do: 

1 For each data set, use technology to calculate: 

a the mean of each variable b the population variance of each variable. 

Comment on your answers. 

2 Find the regression line for each data set. What do you notice? 

3 Construct a scatter diagram for each data set, and plot the corresponding regression line on the 

same set of axes. 

4 How do your calculations in 1 and 2 compare to your graphs in 3? Is a linear model necessarily 

appropriate for each data set? 

5 Why is it important to consider both graphs and descriptive statistics when analysing data?
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ACTIVITY 3 

In addition to the correlation coefficient and the linearity of a scatter diagram, we ResURC 

can use a residual plot to decide whether a linear model is appropriate. Click on 

the icon to explore these graphs. 

  

THEORY OF KNOWLEDGE 

The use of extrapolation for predicting the future leads to debate on many global issues. Even when 

data shows a strong linear correlation, we need to consider whether it is reasonable for the trend to 

continue in the long term. 

  

For example, the graph below is based on the article by Oeppen and Vaupel (2002)(*). Tt shows 
female life expectancy from 1840 to the early 2000s, and the country with the highest female life 

expectancy at each point in time. 

Notice that: 

e The linear regression trend line is drawn in black, and extrapolated in grey. 

e The horizontal black lines show asserted “ceilings” on life expectancy. The vertical line at the 

left end shows the year of publication. 

e The dashed red lines denote projections of female life expectancy in Japan published by the 

United Nations (UN) in 1986, 1999, and 2001. 

Record female life expectancy from 1840 to the present - Oeppen and Vaupel (2002) 
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1 Discuss the relationship between the variables. 

2 Use the regression line to predict female life expectancy in the year 2100. Do you think 

this is realistic? 

3 Discuss the “ceilings” suggested by publishers over time. Is there evidence to suggest 

that human life expectancy will approach a limiting “ceiling”? 

4 Discuss the accuracy of the UN projections for females in Japan from 1986 to 1999. Is 

there reason to expect the latest projection will be more reliable? 

The graph below shows data from the NASA Goddard Institute for Space Studies!?l. The data for 

each point is for the first six months of the corresponding year. 

Global Mean Surface Temperature (January-June) 
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5 Discuss the relationship between the variables. Is it reasonable to use a linear model to 

describe the mean surface temperature of the Earth over time? Is it reasonable to even 

conclude that the mean surface temperature of the Earth is increasing? 

6 How can we predict the mean surface temperature of the Earth in the future? 

7 Is mathematical extrapolation valid evidence for dictating environmental policy? 

References: 

[1] Oeppen and Vaupel, Broken limits to life expectancy, Science, 296, 5570, 1029-1031, 2002. 

[2] www.nasa.gov/feature/goddard/2016/climate-trends-continue-to-break-records 
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13 0 THE REGRESSION LINE OF - AGAINST 1 
In the previous Section, we saw how linear regression can be 

used to find a linear model for the response variable y in terms 

of the explanatory variable . 

  

     The response 

variable y is 

always on the 

vertical axis. 

In these cases, we generally rely on the z-values being more 

precise than the y-values. This means that either there is less 

error involved with their measurement, or that there is naturally 

less variation associated with the = variable. The distance of 

each data point from the line is measured in the y-direction, so 

we are associating all of the “error” with the response variable 

y. However, in some cases the y-values may be more precisely 

measured. 

   

      

For example: 

e When a student studies for a test, their time spent studying = explains their test score y. However, 

the test score will be more precisely measured than the amount of time spent studying. 

e At a breath testing station, police use a breathalyser to estimate the blood alcohol concentration 

(BAC) of drivers. If the result x is sufficiently high, the driver is required to take a blood test to 

establish their actual BAC. The blood test result y is a much more precise measurement. 

In these scenarios, we consider the regression line of @ against y. This means that we minimise the 

horizontal distances of points from the line, so all of the “error” is associated with the explanatory 

variable z. 

We consider a line of the form = = my + ¢, Y r=my+c 
and choose the constants m and ¢ to minimise 

n 

H=>Y hj 
i=1 

D@ —T)(yi — ) 
>y —79)? 

It can be shown that m = 

and ¢ =T —m7. 

Rearranging the regression line = = my+c into 

  

  

     
  

. . . 1 
gradient-intercept form gives y = —x — £, > 

m m xT 

. o T2 
The gradient of the rearranged line is — = M #a 

m Y (@ —T)(vi — ) 

. . c —(T — my) Yy regression line of 
and the y-intercept is —— = —— = against y 

m m 

. my—T 

o m 
1 regression line of 

— y —_ -7 y against 

m ° 

#b {since % #a} 

So, in general, the regression line of x against y is 

not the same as the regression line of y against x. 
  

8]
y
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Example 5 o) Self Tutor 

The data below shows the quantity of feed eaten and the number of eggs laid in a fortnight for 

12 Leghorn chickens: 

Feed (z kg) 0.57 | 0.86 | 0.49 | 1.37 | 0.91 | 0.50 

Number of eggs (y) 4 6 3 9 6 3 
  

  

  

Feed (x kg) 0.97 | 1.06 | 1.00 | 0.68 [ 1.34 [ 0.94 

unber o g5 0 
Explain why it would be appropriate to use the regression line of = against y in this case. 

      
Find the regression line of x against y. 

Use the regression line to estimate: 

i the quantity of feed required for a Leghorn chicken to lay a dozen eggs 

il the number of eggs laid in a fortnight by a hen that ate 1.2 kg of feed. 

  

The number of eggs laid can be counted exactly, whereas the quantity of feed usually cannot 

be measured exactly. 

Since the response variable y is more precisely measured than the explanatory variable z, it 

would be appropriate to use the regression line of x against y in this case. 

Deglfformd) [d7c)Rea) a (dZc)Rea) 
List 1 | List 2 | List 3 LinearReg (ax+b) 

a =0.14237226 
0.57 b 
0.86 6 

0.49 3 

1.37 9 

  

  

= ~ 
o
l
         —
0
O
0
0
 

    

              (GRAPH:           

The regression line of = against y is = =~ 0.142y + 0.0603 kg. 

i When y=12, z~0.142(12) + 0.0603 

~ 1.76 

We expect a Leghorn chicken to need about 1.76 kg of feed to lay a dozen eggs. 

il When z=1.2, 1.2~0.142y + 0.0603 

1.1397 ~ 0.142y 
cooy~8 

We expect a Leghorn chicken eating 1.2 kg of feed to lay about 8 eggs.   
EXERCISE 19E 

1 The table below shows the amount of time a sample of families spend preparing homemade meals 

each week, and the amount of money they spend each week on fast food. 

Time on homemade meals (x hours) | 3.5 | 6.0 [ 4.0 [ 85| 7.0] 25 19.0|7.0|4.0(75 
  

[ o onfaniedtsn [ 0[] o |27 [w]1s [ w05 =] 
a Explain why it would be appropriate to use the regression line of = against y in this case. 
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b Find the regression line of x against y. 

¢ Use the regression line to estimate: 

i the time spent preparing homemade meals by a family that spends $45 on fast food 

ii the amount of money spent on fast food by a family that spends 5 hours preparing 

homemade meals. 

2 The table below shows how far a group of students live from school, and how long it takes them to 

travel there each day. 
  

Distance from school (xz km) 

Time to travel to school (y min) 

  

  

a Draw a scatter diagram of the data. 

b Which regression line should be used to model the relationship between the variables? Explain 

your answer. 

¢ Use an appropriate regression line to estimate the travel time of a student who lives 15 km 

from school. 

d Comment on the reliability of your estimate. 

3 Eight students swim 200 m breaststroke. Their times y in seconds, and arm lengths z in cm, are 

shown in the table below: 

[t [ & ] 5 [ 7w % 7 w6 
Breaststroke (y seconds) 

  

  

a Draw a scatter diagram for the data. 

b Find the equation of the regression line of: 

iy against x il z against y. 

¢ Plot both regression lines on your scatter diagram. What do you notice? 

4 Consider the bivariate data set {(z1, y1), (%2, Y2), «..es (Tn, Yn)}. The equation of the regression line 

of y against z is y = ax + b and the equation of the regression line of x against y is = = my + c. 

a Show that ma = r2?, where r is Pearson’s product-moment correlation coefficient. 

b Hence find the condition(s) under which the two regression lines will be the same. 

Suppose the variables z and y are measured with equally poor precision. 

1 Is it necessarily appropriate to choose one regression line over the other in this case? 

2 How could we take the poor precision of both variables into account when formulating the 

linear regression model? Consider the “distance” that we minimise when we perform the linear 

regression. 

3 In some situations, the variables depend equally on each other. In these cases we say that the 

variables are co-dependent, and the variables can be placed on either axis of the scatter diagram. 

Is it sensible to use a regression line to describe the relationship between co-dependent variables?
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THEORY OF KNOWLEDGE 

Since the 1970s and 1980s, wage discrimination between men and women has been a topic of debate. 

During that time, Conway and Roberts!] published a study which used linear regression to show 

that on average, women with the same qualifications as men were paid less. This would seem to 

imply that given the same salary, women would be more qualified. However, when the regression 

was applied the other way, the opposite conclusion was observed. 

1 Can you explain why this occurred? 

2 Are these two questions necessarily equivalent? 

e “Given the same qualifications, do men and women earn the same wage?” 

e “Given the same wage, do men and women have the same qualifications?” 

3 Isit necessary to consider both regression lines in order to conclude whether discrimination 

has occurred? 

4 Should people be paid according to their qualifications, the job they do, or their capability 

in doing that job? 

[1] Conway, Delores A. and Harry V. Roberts (1983). “Reverse Regression, Fairness, and 

Employment Discrimination”. In: Journal of Business & Economic Statistics 1.1, pp. 75-85. 

REVIEW SET 19A 

1 For each scatter diagram, describe the relationship between the variables. Consider the direction, 

linearity, and strength of the relationship, as well as the presence of any outliers. 

  

2 Kerry wants to investigate the relationship between the water bill and the electricity bill for the 

houses in her neighbourhood. 

a Do you think the correlation between the variables is likely to be positive or negative? 

Explain your answer. 

b s there a causal relationship between the variables? Justify your answer. 

3 Consider the data set alongside. 

a Draw a scatter diagram for the data. 
b Does the correlation between the variables 

appear to be positive or negative? 

¢ Calculate Pearson’s product-moment correlation coefficient r. 

  

4 The table below shows the ticket and beverage sales for each day of a 12 day music festival: 

  

Beverage sales ($y x 1000) | 9 
  

a Draw a scatter diagram for the data.
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b Calculate Pearson’s product-moment correlation coefficient r. 

¢ Describe the correlation between ticket sales and beverage sales. 

5 A clothing store recorded the length of time customers were in the store and the amount they 

spent. 

81851017112131841120232217 

Money €) [20 [ 78 [0 [46] 72|86 [0]59]33[0] 0 [122]00]137]93 
  

a Find the mean for each variable. 

b Draw a scatter diagram for the data. Plot the mean point, and draw a line of best fit by 

eye. 

¢ Describe the relationship between time in the store and the money spent. 

6 The ages and heights of children at a playground are given below: 

Age (x years) | 3 9 7 4 4 12 8 6 5 10 | 13 

Height (y cm) | 94 | 132 | 123 | 102 | 109 | 150 | 127 | 110 | 115 | 145 | 157 
  

Draw a scatter diagram for the data. 

b Use technology to find the regression line of 

y against . 

¢ State and interpret the gradient of the 

regression line. 

d Use the regression line to predict the height 

of a 5 year old child. 

e Based on the given data, at what age would 

you expect a child to reach 140 cm in height? 

  

7 Tomatoes are sprayed with a pesticide-fertiliser mix. The table below shows the yield of tomatoes 

per bush for various spray concentrations. 

Spray concentration (x mL per L) 

ooy Gy o [ 13 1 | [ 
Draw a scatter diagram to display the data. 

  

Determine the value of 7 and interpret your answer. 

Is there an outlier present that is affecting the correlation? 

Q 
an 
O
 o
 

The outlier was found to be a recording error. Remove the outlier from the data set, and 

recalculate 7. Is it reasonable to now fit a linear model? 

Determine the equation of the regression line of y against x. 

State and interpret the gradient and y-intercept of the regression line. 

g Use your line to estimate: 

i the yield if the spray concentration is 7 mL per L 

ii the spray concentration if the yield is 200 tomatoes per bush. 

h Comment on the reliability of your estimates in g.
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8 Thomas rode his bicycle for an hour each day for eleven days. He recorded the number of 

kilometres he rode, along with his estimate of the temperature that day: 
  

  

Draw a scatter diagram for the data. 

Explain why it would be appropriate to use the regression line of 71" against d in this case. 

Find the equation of the regression line of 1" against d. 

Q 
an 
O
 o
 

How far would you expect Thomas to ride on a 30°C day? 

REVIEW SET 19B 

1 For each pair of variables, discuss whether the correlation between the variables is likely to be 

positive or negative, and whether a causal relationship exists between the variables: 

a price of tickets and number of tickets sold 

b ice cream sales and number of shark attacks. 

2 A group of students is comparing their results for a Mathematics test and an Art project: 

Mathemattcs test | 64 | 67 [ 69 | 70 | 73 | T4 | 77 | 82 [ 84 | 85 

[ i [s[w w]w [0 ]w]n el 
a Construct a scatter diagram for the data. 

  

       
    
   

  

b Describe the relationship between the Mathematics and Art marks. 

¢ Calculate the correlation coefficient r between the variables. 

3 Safety authorities advise drivers to travel three seconds 

behind the car in front of them. This gives the driver 

a greater chance of avoiding a collision if the car in 

front has to brake quickly or is itself involved in an 

accident. 

A test was carried out to find out how long it would 

take a driver to bring a car to rest from the time a red 

light was flashed. The following results were recorded 

for a particular driver in the same car under the same 

test conditions. 

Speed (v kmh=1) | 10 | 20 | 30 | 40 60 80 
Stopping time (ts) | 1.23 | 1.54 | 1.88 | 2.20 | 2.52 | 2.83 | 3.15 | 3.45 | 3.83 

a Find the mean point (7, 7). 

  

  

  

b Draw a scatter diagram of the data. Add the mean point and draw a line of best fit by eye. 

¢ Hence estimate the stopping time for a speed of: 

i 55 kmh~! il 110 kmh—! 

d  Which of your estimates in ¢ is more likely to be reliable?
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a 

b 

< 

& Consider the data set alongside. n“ 13 | 16 

Calculate the correlation coefficient 7. 61   
Find the regression line of y against z. 

Estimate the value of y when z = 10. 

5 A craft shop sells canvasses in a variety of sizes. The table below shows the area and price of 

each canvas type. 

® 
O
 

aAn
 
O
 
o
 

e o) [ 00 2 T30 [ o o 
  

Construct a scatter diagram for the data. 

Calculate the correlation coefficient 7. 

Describe the correlation between area and price. 

Find the regression line of y against z, then draw the line on the scatter diagram. 

Estimate the price of a canvas with area 1200 cm?. Discuss whether your estimate is likely 

to be reliable. 

6 A drinks vendor varies the price of Supa-fizz on a daily basis. He records the number of sales 

of the drink as shown: 

® 
O 

aAn 
O 

o 

  

Price ($p) [ 250 [ 1.90 | 1.60 [ 210 [ 2.20 [ 140 | 1.70 | 1.85 

Sales (s) 450 | 448 | 386 | 381 | 458 | 597 
  

    

  

Produce a scatter diagram for the data. 

Are there any outliers? If so, should they be included in the analysis? 

Calculate the equation of the regression line of s against p. 

State and interpret the gradient of the regression line. 

Do you think the regression line would give a reliable prediction of sales if Supa-fizz was 

priced at 50 cents? Explain your answer. 

7 Eight identical flower beds contain petunias. The different beds were watered different numbers 

of times each week, and the number of flowers each bed produced was recorded in the table 

  

below: 

Number of waterings (n) | 0 | 1 | 2 3 4 5 6 7 

Flowers produced (f) 18 | 52 | 86 | 123 | 158 | 191 | 228 | 250 

a Draw a scatter diagram for the data, and describe the correlation between the variables. 

Find the equation of the regression line of f against n. 

Is it likely that a causal relationship exists between these two variables? Explain your 
answer. 

Plot the regression line on the scatter diagram. 

Violet has two beds of petunias. She waters 

one of the beds 5 times a fortnight and the 

other 10 times a week. 

i How many flowers can she expect from 

each bed? 

ii Discuss which of your estimates is likely 

to be more reliable. 
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8 An archer shoots 10 arrows at a target from each of 12 different positions. The table below 

shows the distance of each position from the target, and how many shots were successful. 

  

Draw a scatter diagram for the data. a 

b Explain why it would be appropriate to use the regression line of x against y in this case. 

¢ Find the equation of the regression line of = against y. 

d Predict the number of hits out of 10 shots fired at a distance of 100 m. Discuss the reliability 

of your estimate.



  

Discrete random 

variables 

Contents: 

  

A Random variables 

C 
Discrete probability distributions 
Expectation 

The binomial distribution 

Using technology to find binomial 

probabilities 

The mean and standard deviation 

of a binomial distribution
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  OPENING PROBLEM 

In a sideshow game, players have a 50% chance of winning 

a prize worth $2, $5, $10, or $20. The probabilities of 

winning these prizes are given in the table below. 

    

0.35 0.04 | 0.01 

  

Things to think about: 

a What is the sum of the probabilities in the table? Why must this be the answer? 

b What is the most likely outcome from playing the game? 

¢ What is the average result from playing the game? 

d What is a fair price for playing the game? 

Many variables in the world around us depend on chance events. Examples of such variables are: 

e the number of players in your football team who will score a goal in the next match 

e the time it will take you to travel to school tomorrow 

o the sum of the numbers when three dice are rolled. 

Because of the element of chance in these variables, we cannot predict the exact value they will take 

when next measured. However, we can often determine the possible values the variable can take, and 

we can assign to each possible value the probability of it occurring. 

In this Chapter we will extend the ideas of probability we have studied to model the random variation 

or distribution of numerical variables. 

NI RANDOM VARIABLES 
A random variable uses numbers to describe the possible outcomes 

which could result from a random experiment. 

A random variable is often represented by a capital letter such as X. 

Random variables can be either discrete or continuous. 

A discrete random variable X has a set of distinct possible values. 

For example, X could be: 

e the number of wickets a bowler takes in an innings of cricket, so X could take the values 

0,1,2, .., 10 
o the number of defective light bulbs in a purchase order of 50, so X could take the values 

0,1,2, ..., 50. 

To determine the value of a discrete random variable, we need to count. 

A continuous random variable X can take any value within 
some interval on the number line.
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For example, X could be: 

e the heights of men, which lie in the interval 50 cm < X < 250 cm 

o the volume of water in a tank, which could lie in the interval 0 m* < X < 100 m?. 

To determine the value of a continuous random variable, we need to measure. 

DISCRETE RANDOM VARIABLES 

In this Chapter, we will focus on how discrete random variables and their distributions arise. 

Example 1 o) Self Tutor 

  

A supermarket has three checkouts A, B, and C. A government inspector checks the weighing 

scales for accuracy at each checkout. The random variable X is the number of accurate weighing 

scales at the supermarket. 

a List the possible outcomes and the corresponding values of X. 

b What value(s) of X correspond to there being: 

i one accurate scale ii at least one accurate scale? 

  

b i X=1 

i X=1,20r3 

a Possible outcomes: 
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EXERCISE 20A 

1 Classify each random variable as continuous or discrete: 

a the quantity of fat in a sausage b the mark out of 50 for a geography test 

¢ the weight of a Year 12 student d  the volume of water in a cup of coffee 

e the number of trout in a lake f the number of hairs on a cat 

g the length of a horse’s mane h the height of a skyscraper. 

2 For each scenario: 

i Identify the random variable being considered. 

ii State whether the variable is continuous or discrete. 

iii  Give possible values for the random variable. 

To measure the rainfall over a 24-hour period in Singapore, water is collected in a rain gauge. 

b To investigate the stopping distance for a tyre with a new tread pattern, a braking experiment 

is carried out. 

¢ To check the reliability of a new type of light switch, switches are repeatedly turned off and 

on until they fail.
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3 Suppose the spinners alongside are spun, and X is 

the sum of the numbers. 

a Explain why X is a discrete random variable. 

b State the possible values of X. p vv 

4 In the finals series of a baseball championship, the first team to win » 

4 games wins the championship. Let X represent the number of games 

played in the finals series. (/ 

a State the possible values of X. = 
N 

b What value(s) of X correspond to the series lasting: 

i exactly 5 games ii at least 6 games? 

5 A supermarket has four checkouts A, B, C, and D. Management checks the weighing devices at 

each checkout. The random variable X is the number of weighing devices which are accurate. 

a What values can X have? 

b List the possible outcomes and the corresponding values of X. 

¢ What value(s) of X correspond to: 

i exactly two devices being accurate il at least two devices being accurate? 

6 Suppose three coins are tossed simultaneously. Let X be the number of heads that result. 

a State the possible values of X. 

b List the possible outcomes and the corresponding values of X. 

¢ Are the possible values of X equally likely to occur? Explain your answer. 

I3 [0 BISGRETE PROBABILITY DISTRIBUTIONS 
For any random variable, there is a corresponding probability distribution which describes the 

probability that the variable will take a particular value. 

The probability that the variable X takes value x is denoted P(X = z). 

If X is a random variable with possible values {z1, x2, 3, ...., ,} and corresponding 

probabilities {p1, p2, P3, ..., Pn} such that P(X =a;) =p;, i =1, ..., n, then: 

e 0<p;<1 forall i=1,..,n 
n 

© Y Ppi=pi+p2+p3to.tp=1 
i=1 

e {pi, ..., pn} describes the probability distribution of X. 

For example, suppose X is the number of heads obtained when 

2 coins are tossed. The possible values for X are {0, 1, 2} with 

corresponding probabilities {1, 3, T}. We see that 0 < p; < 1 
for each value of 7, and that the probabilities add up to 1. 
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We can display this probability distribution in a table or a graph. 

  

  

  

  

  

            

A probability probability 

1 1 
2 3 

1 1 

4 ‘ ‘ 4 { ‘ 
% 1 5 90 1 7 % 

UNIFORM DISCRETE RANDOM VARIABLES 

If the possible values 1, xo, ..., x,, of a discrete random variable X all have the same probability L 
n 

of occurring, then X is a uniform discrete random variable. 

An example of a uniform discrete random variable is the result X when a die 

is rolled. The possible values of X are 1, 2, 3, 4, 5, and 6, and each value has 

probability 1 of occurring. 

By contrast, if two dice are rolled, the sum of the resulting numbers Y is not a 

uniform discrete random variable. 

THE MODE AND MEDIAN 

The mode of a discrete probability distribution is the most frequently occurring value of the variable. 

This is the data value x; whose probability p; is the highest. 

The median of the distribution corresponds to the 50th percentile. If the possible values {1, g, ...., ,, } 

are listed in ascending order, the median is the value x; when the cumulative sum p; + pa2 + ... + p; 

reaches 0.5. 

  

Example 2 «) Self Tutor 

A magazine store recorded the number of magazines purchased by its customers in one week. 

23% purchased one magazine, 38% purchased two, 21% purchased three, 13% purchased 
four, and 5% purchased five. Let X be the number of magazines sold to a randomly selected 

customer. 

a State the possible values of X. b Construct a probability table for X. 

¢ Graph the probability distribution. d Find the mode and median of X. 
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d Customers are most likely to buy 2 magazines, so this is the mode of X. 

Now p; =0.23 

and p; +py =0.23+0.38 = 0.61 

Since p; + p2 > 0.5, the median is 2 magazines. 

  

We can also describe the probability distribution of a discrete random variable using a probability mass 

function P(z) = P(X = ). The domain of the probability mass function is the set of possible values 

of the variable, and the range is the set of values in the probability distribution. 

[k LR (R TS 

  

All of these values obey 0 < P(z;) <1, and > P(z;) = 314 + 3% + é—g + é—z = 
i=1 

P(x) is a valid probability mass function. 
  

  

EXERCISE 20B 

1 a State whether each of the following is a valid probability distribution: 

  

  
b For which of the probability distributions in a is X a uniform random variable? 

2 Find k in each of these probability distributions: 

   [P [or [+ [o7] [P =i+ o[ ] 
3 Consider the probability distribution alongside. n 

a P(X =2) | 0.1 |0.25 | 0.45 
  

Find the value of a. 

Is X a uniform discrete random variable? Explain your answer. 

State the mode of the distribution. 

Find P(X > 2). 2
 

an 
O 

o



DISCRETE RANDOM VARIABLES  (Chapter 20) 485 
  

A 

10 

The probability distribution for Jason scoring X home runs in each game during his baseball career 

is given in the following table: 
  

  

0 1 2 3 4 5 
| P(@) | o |0.3333 | 0.1088 | 0.0084 [ 0.0007 | 0.0000 

State the value of P(2). 

Find the value of a. Explain what this number means. 

Find the value of P(1)+ P(2) + P(3) + P(4) + P(5). Explain what this means. 

Draw a graph of P(z) against . 

® 
O
 

A 
O 

o 

Find the mode and median of the distribution. 

A policeman inspected the safety of tyres on cars passing through a checkpoint. The number of 

tyres X which needed replacing on each car followed the probability distribution below. 

e o il 2]3]4] 
(7Gx =21 [0 [ 02 [ow | & [ow 

a Find the value of k. b Find the mode of the distribution. 

¢ Find P(X > 1), and interpret this value. 

  

Let X be the result when the spinner alongside is spun. 

a Display the probability distribution of X in a table. 

b Graph the probability distribution. A A 

¢ Find the mode and median of the distribution. 

d Find P(X < 3). v v 

100 people were surveyed about the number of bedrooms in their house. 24 people had one bedroom, 

35 people had two bedrooms, 27 people had three bedrooms, and 14 people had four bedrooms. Let 

X be the number of bedrooms a randomly selected person has in their house. 

a State the possible values of X. b Construct a probability table for X. 

¢ Find the mode and median of the distribution. 

A group of 25 basketballers took shots from the free throw line until they scored a goal. 12 of the 

players only needed one shot, 7 players took two shots, 2 players took three shots, and the rest took 

four shots. Let X be the number of shots a randomly selected player needs to score a goal. 

a State the possible values of X. b Construct a probability table for X. 

¢ Find the mode and median of the distribution. 

Show that the following are valid probability mass functions: 

T for 2=0,1,2 3 b Pla)=-> for =123 
10 11z 
  a Pz)= 

Find & for the following probability mass functions: 

a Pla)=k(z+2) for =1,23 b P(z) = frl for 2=0,1,2 3. 
T 
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g2 
11 A discrete random variable X has the probability mass function P(z) = T for 

a 

x=0,1,2,3. 

a Find the value of a. b Find P(X =1). 

¢ Find the mode of the distribution. 

)T =123 .. 

W
l
 12 The discrete random variable X has probability mass function P(z) = a( 

o0 . 

a Find the sum of the infinite geometric series > (%)l ' 
i=1 

b Hence find the value of a. 

13 A discrete random variable X has probability mass function P(xz) = a(%)m, x=0,1,2 3, ... 

Find the value of a. 

ATION 
We have already seen how probabilities can be used to predict the number of times we expect an event 

to occur when an experiment is repeated many times. 

  

We can consider the expected value or expectation of a random variable in a similar way. 

EXPECTED VALUE 

When the spinner alongside is spun, players are awarded the resulting number 

of points. On average, how many points can we expect to be awarded per 

spin? 

For every 4 spins, we would expect that on average, each score will be spun 

once. The total score in this case would be 50 + 15+ 10 + 5 = 80, which 

is an average of % =20 points per spin. 

  

Alternatively, we can write the average score as T 

1(50 4 15 4 10 + 5) on any given spin, but over many 
_1 1ok 1 1 spins we expect an average 
=3X50+ 3 x15+3x10+3 x5 of 20 points per spin. 
= 20 points.     Notice that each score is multiplied by its probability of occurring. 

For a random variable X with possible values w1, xa, x3, ...., x,, and associated 

probabilities pi, pa, ...., P, the expected value of X is 

n 

E(X) = > zip; 
=l 

=Z1p1 + T2p2 + oo + TnPn 

E(X) is the mean of the probability distribution of X. It is sometimes denoted .
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el ) Self Tutor 

Consider the magazine store from Example 2. 

Find the expected number of magazines bought by each customer. Explain what this represents. 

        

    

The probability table is: In Example 2 we 
  

    
  

x; 1 2 3 4 5 found the mode 

(o [0 [0 021 [0 [ 005 e 
= ril-rtpz 

= 1_(0.23) +2(0.38) + 3(0.21) + 4(0.13) + 5(0.05) 

=2.39 

In the long term, the average number of magazines purchased per customer is 2.39.     
  

EXERCISE 20C.1 

1 Find E(X) for the following probability distributions: 

  

  

o o [0 o] 
2 Consider the probability distribution alongside. 5 

a Find the value of a. P(X=u) | 2 n L 
. o = 5 10 

b Find the mode of the distribution. 

¢ Find the mean y of the distribution. 

  

3 When the spinner alongside is spun, players are awarded the resulting 

number of points. In the long term, how many points can we expect 

to be awarded per spin? 

4 When Erpie goes fishir?g,‘he catches 0, 1, 2, or Number of fish n 

3 fish, with the probabilities shown. = 

On average, how many fish would you expect sy 

Ernie to catch on a fishing trip? 

5 Each time Pam visits the library, she Number of books | 1 2 3 1 5 

borrows either 1, 2, 3, 4, or 5 books, / ----- 

    

[Pty _[o0 [075 | o [0 [010] 
a Find the value of a. b Find the mode of the distribution. 

with the probabilities shown. 

¢ On average, how many books does Pam borrow per visit?



488  DISCRETE RANDOM VARIABLES (Chapter 20) 

6 Lachlan randomly selects a ball from a bag containing 5 red Number of lollies 

balls, 2 green balls, and 1 white ball. He is then allowed to take 

a particular number of lollies from a jar according to the colour 

of the ball. 

Find the average number of lollies that Lachlan can expect to 

receive. 

  

7 When ten-pin bowler Jenna bowls her first bowl of a frame, she always knocks down at least 8 pins. 

% of the time she knocks down 8 pins, and é of the time she knocks down 9 pins. 

a Find the probability that she knocks down all 10 pins on the first bowl. 

b On average, how many pins does Jenna knock down with her first bowl? 

8 Given that E(X) =25, find a and b. 

  

9 When Brad’s soccer team plays an offensive strategy, they 

win 30% of the time and lose 55% of the time. When they 

play a defensive strategy, they win 20% of the time and 

lose 30% of the time. 

On the league table, teams are awarded 3 points for a win, 

1 point for a draw, and no points for a loss. 

a Find the probability that Brad’s team will draw a 

match under each strategy. 

b Calculate the expected number of points per game 

under each strategy. 

  

In the long run, is it better for the team to play an offensive or defensive strategy? 

Q
 

Should the strategy change if teams are awarded 4 points instead of 3 points for a win? 

10 Every Thursday, Zoe meets her friends in the city for dinner. There are two car parks nearby, the 

costs for which are shown below: 

   
Car park A Car park B 

ost 

0 - 1 hour $7 0-1hour | $6.50 

1-2hours | $12 1 - 2 hours $11 

2 - 3 hours | $15 2 - 3 hours $16 

3 -4 hours | $19 3 - 4 hours | $18.50 
  

Zoe’s dinner takes 1 - 2 hours 20% of the time, 2 - 3 hours 70% of the time, and 3 - 4 hours 

10% of the time. 

a Which car park is cheapest for Zoe if she stays: 

i 1-2hours il 2 -3 hours iii 3 - 4 hours? 

b When Zoe parks her car, she does not know how long she will stay. Which car park do you 

recommend for her? Explain your answer.
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11 Aninsurance policy covers a $20 000 sapphire ring against 

theft and loss. If the ring is stolen then the insurance 

company will pay the policy owner in full. If the ring 

is lost then they will pay the owner $8000. From 

past experience, the insurance company knows that the 

probability of theft is 0.0025, and the probability of loss 

is 0.03. How much should the company charge to cover 

the ring in order that their expected return is $100? 

  

FAIR GAMES 

In gambling, the expected gain of the player from each game is the expected return or payout from the 

game, less the amount it cost them to play. 

A game is said to be fair if the expected gain is zero. 

Suppose X represents the gain of a player from each game. 

The game is fair if E(X) = 0. 

Would you expect a gambling game to be “fair”? 

In a game of chance, a player spins a square spinner labelled 

1, 2, 3, 4. The player wins an amount of money according 

to the table alongside. 

  

  

Find the expected return for one spin of the spinner. 

b Find the expected gain of the player if it costs $5 to play each game. 

¢ Discuss whether you would recommend playing this game. 

a Let Y denote the return or payout from each spin. 

Each outcome is equally likely, so the probability for each outcome is i 

the expected return = E(Y) =3 x 1+ 3 x 2+ 3 x5+ 1 x 8 = $4.       

b Let X denote the gain of the player from each game. 

Since it costs $5 to play the game, the expected gain = E(X) = E(Y) — $5 

=$4-%5 

=-81 

¢ Since E(X) # 0, the game is not fair. In particular, since E(X) = —$1, we expect the 

player to lose $1 on average with each spin. We would not recommend that a person play the 

game. 

  
  
EXERCISE 20C.2 

1 A dice game costs $2 to play. If an odd number is rolled, the player receives $3. If an even number 

is rolled, the player receives $1. 

Determine whether the game is fair.
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A man rolls a regular six-sided die. He wins the number of dollars shown on the uppermost face. 

a Find the expected return from one roll of the die. 

b Find the expected gain if it costs $4 to play the game. 

¢ Would you advise the man to play many games? 

A roulette wheel has 18 red numbers, 18 black numbers, and 

1 green number. Each number has an equal chance of occurring. 

I place a bet of $2 on red. If a red is spun, I receive my $2 back 

plus another $2. Otherwise I lose my $2. 

a Calculate the expected gain from this bet. 

  

b If the same bet is made 100 times, what is the expected 

result? 

A person pays $5 to play a game with a pair of coins. If two heads appear then $10 is won. If a 

head and a tail appear then $3 is won. If two tails appear then $1 is won. 

Let X be the gain of the person from each game. Find the expected value of X. 

In a carnival game, a player randomly selects a ticket from 

a box of tickets numbered 1 to 20. If the selected number 

is a multiple of 3, the player wins 5 tokens. If the selected 

number is a multiple of 10 the player wins 10 tokens. 

a Calculate the probability of a player winning: 

i 5 tokens ii 10 tokens. 

b Let X be the number of tokens won from playing this 

game. Find the expected value of X. 

  

¢ If it costs 3 tokens to play the game, would you 

recommend playing the game many times? Explain 

your answer. 

A person selects a disc from a bag containing 10 black discs, 4 blue discs, and 1 gold disc. They 

win $1 for a black disc, $5 for a blue disc, and $20 for the gold disc. The game costs $4 to play. 

a Calculate the expected gain for this game, and hence show that the game is not fair. 

b To make the game fair, the prize money for selecting the gold disc is increased. Find the new 

prize money for selecting the gold disc. 

At a charity event there is a money-raising game involving a pair of ordinary dice. The game costs 

$a to play. When the two dice are rolled, their sum is described by the variable X. A sum which is 

less than 4 or between 7 and 9 inclusive gives a return of $§. A result between 4 and 6 inclusive 

gives a return of $7. A result of 10 or more gives a return of $21. 

a Determine P(X <3), PA< X <6), P(T< X <9), and P(X > 10). 

Show that the expected gain of a player is given by %(35 —5a) dollars. 

What value would a need to have for the game to be “fair”? 

Explain why the organisers would not let a be 4. 

® 
& 

A 
O 

The organisers set a = 9 for the event, and the game is played 2406 times. Estimate the 

amount of money raised by this game.
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8 In a fundraising game “Lucky 117, a player selects 3 cards without 

replacement from a box containing 5 red, 4 blue, and 3 green cards. 

The player wins $11 if the cards drawn are all the same colour or are 

one of each colour. 

If the organiser of the game wants to make an average of $1 per game, 

how much should they charge to play it? 

  

  ACTIVITY 

In this Activity, we will play a variant of the dice game Greedy Pigs. We will use expected value 

to find a strategy for playing the game. 

In each turn of the game, a player rolls a die a number of 

times, accumulating points according to the numbers rolled. 

After each roll, the player can either end their turn and 

“bank” the points accumulated so far, or continue rolling 

in an attempt to score more points. However, if the player 

rolls a 1, the player loses all of the points accumulated on 

that turn, and their turn is over. 

  

What to do: 

1 Play the game in pairs, so that each player has 20 turns. 

Which player scored the most points in total? Discuss the strategies you used during the game. 

Did your strategy change during the game? 

2 Expected value can be used to find a strategy that, on average, will maximise a player’s score. 

a Explain why it would not be sensible to: 

i stop while you have scored less than 5 points 

ii keep going if you have scored over 50 points. 

b Suppose you have scored 10 points so far in your turn. Let X be the gain or loss from 

rolling again. 

i Construct a probability distribution for X. 

ii Show that E(X) is positive. 

ili What does E(X) tell us about whether we should roll again at 10 points? 

¢ Find the lowest score at which, on average, it is not beneficial to continue rolling. Hence 

describe a strategy that will maximise your score in the long term. 

d Can you think of situations where this strategy may not be the best strategy for winning 

the game? 

3 How would the strategy for maximising your score change if your turn ended when a 6 was 

rolled, rather than a 1?
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[0 [T THE BINOMIAL DISTRIBUTION 
Suppose X = the number of blues which result from spinning this spinner once. 

The probability distribution of X is: 

  

  
Now suppose we spin the spinner n times and count the number of blues that result. The probability 

that we get a blue is the same for each spin, and each spin is independent of every other spin. This is 

an example of a binomial experiment. 

In a binomial experiment: 

e there are a fixed number of independent trials 

e there are only two possible results for each trial: 

success if some event occurs, or failure if the event does not occur 

e the probability of success is the same for each trial. 

If X is the number of successes in a binomial experiment with n trials, each 

with probability of success p, then X is a binomial random variable. 

THE PROBABILITY DISTRIBUTION OF A BINOMIAL RANDOM VARIABLE 

Consider the spinner above with 3 blue sectors and 1 white sector. Suppose a “success” is a blue result 

and let X be the number of “successes” in 3 spins of the spinner. X is a binomial random variable with 

n=23 and p= %, and can take the values 0, 1, 2, or 3. 

To help determine the probability distribution of X, we first draw a tree diagram and find the probabilities 

associated with each possible outcome. We let B represent blue and W represent white. 

1st spin 2nd spin 3rd spin outcome probability 

i B BBB @) 
3 B < ) 
’ i w BBW " @) 

B 
3 

3 I <Z: B BWB 3 @@ 
1 I W 

. Y @@ 
3 2 
i B WBB () &) 

; ; ~® 
: T wEw o DO 

w 

; i~ wwE (@R 1 w < 

i w www @° 

The outcomes have been shaded according to the value of X.
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The probabilities associated with each value of X are: 

P(X = 0) = P(WWW) 
= (1) 3 {outcome shaded green} 

P(X =1) = P(BWW or WBW or WWB) 

=HEA+HGHEH @G 
=@ x (2) (%)2 {outcomes shaded yellow} 

or BWB or WBB) 

)+ HHE +HE) 
=3x (3 )2 (1) {outcomes shaded red} 

P(X = 3) = P(BBB 
= (%) s {outcome shaded blue} 

    
z
 

Notice that for any particular value of X, each outcome with this property will have the same probability 

of occurring. The order in which blues and whites appear does not matter. 

n! 
In Chapter 1 we saw that "C, = (") = is the number of ways in which we can obtain 

T rl(n —r)! 

r successes from n trials, ignoring order. 

  

  

  

      

For example, the circled factor (3) is the number of ways of getting 1 success out of 3 trials, or (?) 

We can use this notation to write: A probability 

=0 -()° =@ @ ~oos 
POC=D =31 =@ @ =om0s 
PX=2)=3(3)'(3)" =()()(3) ~04219 02 
P(X =3) = ()’ = (DA’ (H)° ~ 04219 01 

So, P(X =) = (3)(3)" (%)’ where 2=0,1,2,3. T 2 s ¢ 
          The sum of the probabilities ~ P(X =0) +P(X =1)+P(X =2) +P(X =3) 

1 =) 3 @) B @)+ @) 
which is the binomial expansion of (% + %)3. 

Evaluating, (4 + %)3 =1 which must be the case since all possibilities are covered. 

Suppose X is a binomial random variable with n independent trials and 

probability of success p. The probability mass function of X is: 

_ “~” reads “is 
Plz)=PX=z)= (") p*(1—p)"~* where =0,1,2, ..., n. o () ( ) (m) P p) RUCIC 052 .., distributed as”. 

/ N 
number of ways x successes probability of obtaining  successes 
can be ordered amongst the and n — z failures in a particular 

Al order 

The probability distribution of X is called the binomial distribution, and 

we write X ~ B(n, p).  
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Example 6 o) Self Tutor 

5 

1+ 1) - a Expand ( 

b An archer has a 90% chance of hitting a target with each arrow. If 5 arrows are fired, determine 

the chance of hitting the target: 

i twice only il at most 3 times. 

  

k 

= (%)”+5(3) (%) +10(5)" ()" +10(%)" ()" +5(%)" (%) + (%) 
b The probability of success with each arrow is p = %. 

Let X be the number of arrows that hit the target. 

The expansion in a gives the probability distribution for X. 

(%) + 5(H) (&) +10(5)" (%) +10(%)° (%)’ +5(H)" (%) + &)’ 
—_ = —— — == =~ 

P(X =0) P(X =1) P(X =2) P(X =3) P(X =4) P(X =5) 
5 misses 1 hit 2 hits 3 hits 4 hits 5 hits 

4 misses 3 misses 2 misses 1 miss 

i P(hits twice only) = P(X = 2) 

— 93\2/1)\3 
=10(15) " (15) 
= 0.0081 

il P(hits at most 3 times) = P(X < 3) 

P(X =0) +P(X =1) + P(X =2) + P(X = 3) 

(110)5 ’ 5(190)(110)4 ’ 10(190)2(110)3 ’ 10(190)3(110)2 

~ 0.0815 

    

      

  

  

  

EXERCISE 20D 

1 For which of these probability experiments does the binomial distribution apply? Explain your 

answers. 

a A coin is thrown 100 times. The variable is the number of heads. 

b One hundred coins are each thrown once. The variable is the number of heads. 

¢ A box contains 5 blue and 3 red marbles. I draw out 5 marbles one at a time, replacing each 

marble before the next is drawn. The variable is the number of red marbles drawn. 

d A box contains 5 blue and 3 red marbles. I draw out 5 marbles without replacement. The 

variable is the number of red marbles drawn. 

e A large bin contains ten thousand bolts, 1% of which are faulty. I draw a sample of 10 bolts 

from the bin. The variable is the number of faulty bolts. 

2 a Expand (p+q) 

If a coin is tossed four times, what is the probability of getting: 

i 4 heads il 3 heads iii 2 heads?
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3 a Expand (p+q)°. 

b If five coins are tossed simultaneously, what is the probability of getting: 

i 4 heads and 1 tail in any order 

ii 2 heads and 3 tails in any order 

iii 4 heads and then 1 tail? 

4 a Expand (% + %)4. 

b A box of chocolates contains strawberry creams and almond centres in the ratio 2 : 1. Four 

chocolates are selected at random, with replacement. Find the probability of getting: 

i all strawberry creams 

i two of each type 

iii at least 2 strawberry creams. 

5 a Expand (2+41)° 
b In New Zealand in 1946 there were two different 

coins of value one florin. These were “normal” kiwis 

and “flat back™ kiwis, in the ratio 3 : 1. From a 

very large batch of 1946 florins, five were selected at 

random with replacement. Find the probability that: 

i two were “flat backs” 

ii at least 3 were “flat backs” 

iii at most 3 were “normal” kiwis. 

flat back kiwi 

   
    normal kiwi 

6 The probability mass function for X ~ B(n, p) is P(z) = (:‘) pr(l—p)n*. 

a Use the binomial theorem to show that > P(z) = 1. 
=0 

b Hence explain why 0 < P(z) <1 forall z=0,1, ..., n. 

¢ What do a and b tell you about P(z)? 

  INVESTIGATION 1 

In this Investigation we will explore the graph of a binomial distribution and how its shape varies 

with changes to n and p. 

What to do: 

1 Click on the icon to access the demonstration. It shows the graph of the binomial PEMO 

distribution for X ~ B(n, p). Set n =20 and p=0.1. 

a What is the mode of X? 

b Describe the shape of the distribution. 

2 Use the slider to change the value of p. Describe how the shape of the distribution changes as 

p changes. 

3 Reset p to 0.1. Use the slider to change the value of n. 

How does this affect the shape of the distribution? What happens to the shape of the binomial 

distribution as the number of trials n increases?
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Y TO FIND 
BABILITIES 

We can quickly calculate binomial probabilities using a graphics calculator. . 

For example: 
GRAPHICS 

e To find the probability P(X = k) that the variable takes the value k, we Nt 
use the binomial probability function. 

e To find the probability that the variable takes a range of values, such as P(X < k) or P(X > k), 

we use the binomial cumulative probability function. 

Some calculator models, such as the TI-84 Plus CE, only allow you to calculate P(X < k). To find 

the probability P(X > k) for these models, it is often easiest to find the complement P(X < k —1) 

anduse P(X > k)=1—-P(X <k—1). 

  

[ LA R B L) 

72% of union members are in favour of a certain change to their conditions of employment. 

A random sample of five members is taken. Find the probability that: 

a three members are in favour of the change in conditions 

b at least three members are in favour of the changed conditions. 

Let X denote the number of members in the sample in favour of the change. 

n=>5 s0 X=0,1,2,3,4,0r5, and p=72%=0.72 

X ~ B(5, 0.72). 

a P(X =3)=(5)(0.72)3(0.28)? ~ 0.293 

Casio fx-CG50 TI-84 Plus CE TI-nspire 
NORMAL FLOAT AUTO REAL RADIAN MP n *Unsaved w a Radforn] EB/dRead 

Binomial P.D 
p=0.29262643 

binompdf (5,0.72,3) binomPdf(5,0.72,3) 0.292626 
9.292626432 | 

   
b P(X >3)~0.862 

Casio fx-CG50 TI-84 Plus CE TI-nspire 
B ERRe) NORMAL FLOAT AUTO REAL RADIAN MP n NEERE *Unsaved w 

Binomial C.D s - binomedf (5,0.72,2) binom(df(5,0.72,3,5) 0.862352 
p=0.86235217 0.1376478208| | 
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EXERCISE 20E 

1 5% of electric light bulbs are defective at manufacture. 6 bulbs are randomly tested, with each one 

being replaced before the next is chosen. Determine the probability that: 

a two are defective b at least one is defective. 

2 Records show that 6% of the items assembled on a production line are faulty. A random sample of 

12 items is selected with replacement. Find the probability that: 

a none will be faulty b at most one will be faulty 

¢ at least two will be faulty d less than four will be faulty. 

3 The local bus service does not have a good reputation. The 

8 am bus will run late on average two days out of every 

five. For any week of the year taken at random, find the 

probability of the 8 am bus being on time: 

a all 7 days b only on Monday 

¢ on any 6 days d on at least 4 days. 

  

& In a multiple choice test there are 10 questions. Each question has 5 choices, one of which is correct. 

Raj knows absolutely nothing about the subject, and guesses each answer at random. Given that the 

pass mark is 70%, determine the probability that he will pass. 

5 An infectious flu virus is spreading through a school. The probability of a randomly selected student 

having the flu next week is 0.3. Mr C has a class of 25 students. 

a Calculate the probability that 2 or more students from Mr C’s class will have the flu next week. 

b If more than 20% of the students have the flu next week, a class test will have to be cancelled. 

What is the probability that the test will be cancelled? 

6 During a season, a basketball player has an 85% success rate in shooting from the free throw line. 

In one match the basketballer has 20 shots from the free throw line. 

Find the probability that the basketballer is successful with: 

a all 20 throws b at least 18 throws 

¢ between 14 and 17 (inclusive) throws. 

7 Martina beats Jelena in 2 games out of 3 at tennis. What is the probability that Jelena wins a set of 

tennis 6 games to 4? 

Hint: What does the score after 9 games need to be? 

8 A fair coin is tossed 200 times. Find the probability of obtaining: 

a between 90 and 110 (inclusive) heads b more than 95 but less than 105 heads. 

9 a Find the probability of rolling double sixes with a pair of dice. 

b Suppose a pair of dice is rolled 500 times. Find the probability of rolling between 10 and 

20 (inclusive) double sixes.



498  DISCRETE RANDOM VARIABLES (Chapter 20) 

10 Shelley must pass through 15 traffic lights on her way to work. She has probability 0.6 of being 

stopped at any given traffic light. If she is stopped at more than 11 traffic lights, she will be late 

for work. 

a Find the probability that Shelley will be late for work on a given day. 

b Find the probability that Shelley is on time for work each day of a 5 day week. 

¢ Shelley wants to increase the probability in b to at least 80%. She decides to leave home a 

little earlier, so she must now be stopped at more than 12 traffic lights in order to be late. Has 

Shelley achieved her goal? Justify your answer. 

11 A hot water unit relies on 20 solar components for its power, and will operate provided at least one 

of its 20 components is working. The probability that an individual solar component will fail in a 

year is 0.85, and the failure of each individual component is independent of the others. 

a Find the probability that the hot water unit will fail within one year. 

b Find the smallest number of solar components required to ensure that a hot water service like 

this one is operating at the end of one year with a probability of at least 0.98. 

N OF A 
BUTION 

INVESTIGATION 2 

In this Investigation we will use a calculator to calculate the mean and 

standard deviation of several binomial distributions. A spreadsheet can also 
GRAPHICS be used to speed up the process. CALCULATOR 

INSTRUCTIONS 

     

    

What to do: 

1 We will first calculate the mean and standard deviation for [T T 

the variable X ~ B(30, 0.25). ST 
%=7.5 

a Enter the possible values for X from z = 0 to & é:zéf 75 

2 = 30 into List 1, and their corresponding binomial Sx= 
s 30 i o ox=2.371708245 

probabilities P(X = z) = (*?) (0.25)*(0.75) 

into List 2. 

  

b Calculate the descriptive statistics for the distribution. 

You should obtain the results in the screenshot. 

2 Copy and complete the following table for distributions with other values of n and p. 
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From this Investigation you should have observed the following results: 

Suppose X is a binomial random variable with parameters n and p, so X ~ B(n, p). 

e The mean of X is p = np. 

e The variance of X is 02 = np(1 — p). 

e The standard deviation of X is o = \/np(1 — p). 

Click on this icon to see a proof for the mean of the binomial distribution. PROOF 

  

  

€1 TR 

A fair die is rolled twelve times, and X is the number of sixes that result. 

Find the mean, variance, and standard deviation of X. 
  

This is a binomial distribution with n =12 and p = %, so X ~ B(12, %) 

w=mnp a® =np(1—p) and o=Vo? 

:12><% :]_2><%><% :\/3 

EY ) 3 

g ~ 1.291 

We expect a six to be rolled 2 times, with variance % and standard deviation 1.291. 

  

EXERCISE 20F 

1 Suppose X ~ B(6, p). For each of the following cases: 

i Find the mean and standard deviation of X. 

ii  Graph the distribution using a column graph. 

iii  Comment on the shape of the distribution. 

a p=05 b p=02 ¢ p=038 

2 A coin is tossed 10 times and X is the number of heads which occur. Find the mean and variance 

of X. 

3 Bolts produced by a machine vary in quality. The probability that a given bolt is defective is 0.04. 

Random samples of 30 bolts are taken from the week’s production. 

a If X is the number of defective bolts in a sample, find the mean and standard deviation of X. 

b If Y is the number of non-defective bolts in a sample, find the mean and standard deviation 

of Y. 

4 A city restaurant knows that 13% of reservations are not honoured, which means the group does not 

arrive. Suppose the restaurant receives 30 reservations. Let the random variable X be the number 

of groups that do not arrive. Find the mean and standard deviation of X. 

5 A new drug has a 75% probability of curing a patient within one week. Suppose 38 patients are 

treated using this drug. Let X be the number of patients who are cured within a week. 

a Find the mean p and standard deviation o of X. b Find P(lu—o < X < p+o).
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6 Let X be the number of heads which occur when a coin is tossed 100 times, 

and Y be the number of ones which occur when a die is rolled 300 times. 

a Show that the mean of both distributions is 50. 

b Calculate the standard deviation of each distribution. 

¢ Which variable do you think is more likely to lie between 45 and 55 (inclusive)? Explain your 

answer. 

d Find: i P(45< X < 55) i P45 <Y < 55) 

  REVIEW SET 20A 

1 Determine whether the following variables are discrete or continuous: 

a the number of attempts to pass a driving test 

b the length of time before a phone loses its battery charge 

¢ the number of phone calls made before a salesperson has sold 3 products. 

a State whether each of the following is a valid probability distribution: 

[ 0]2]5[10] 
ool 

  

  

=) [0as 0 
b For which of the probability distributions in @ is X a uniform discrete random variable? 

  

a . I’ . 
PX =z)= =T x=0,1,2,3 is a probability mass function. 

a Find the value of a. b Find P(X > 1). 

A random variable X has the probability mass 

fuanctli:(i)IIIde(.x) described in the table. - 

b Find P(X > 3). 
¢ Find the mode of the distribution. 

d Find the expected value E(X) for the distribution. 

  

Three green balls and two yellow balls are placed in a hat. Two balls are randomly drawn 

without replacement, and X is the number of green balls drawn. 

a Explain why X is a discrete random variable. 

b State the possible values of X. 

¢ Construct a probability table for X. 

d Find the expected number of green balls drawn. 

The faces of a die are labelled 1, 3, 3, 4, 6, 6. Let X be the result when the die is rolled. Find 

the expected value of X.
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7 Lakshmi rolls a regular six-sided die. She wins twice the number of dollars as the number 

rolled. 

a How much does Lakshmi expect to win from one roll of the die? 

b If it costs $8 to play the game, would you advise Lakshmi to play many games? Explain 

your answer. 

8 Suppose X is the number of marsupials entering a park at night. It is suspected that X has a 

probability mass function P(z) = a(z? —8z) where =0, 1,2, 3, ..., 8. 

a Find the constant a. 

b Find the expected number of marsupials entering the park on a given night. 

9 a Expand (% S5 %)5 

b With every attempt, Jack has an 80% chance of kicking a goal. In one quarter of a match 

he has 5 kicks for goal. Determine the probability that he scores: 

i 3 goals then misses twice ii 3 goals and misses twice. 

10 Consider the two spinners illustrated: 

pentagonal square 
spinner L spinner 

  

a Copy and complete the tree diagram which shows 

all possible results when the two spinners are 

spun together. 

R 

R 

4 R 
R < R 

R < 

b Calculate the probability that exactly one red will occur. 

¢ The pair of spinners is now spun 10 times. Let X be the number of times that exactly one 

red occurs. 

i State the distribution of X. 

ii Write down expressions for P(X =1) and P(X =9). Hence determine which of 

these outcomes is more likely. 

11 Ruben has an 80% chance of waking up early enough to get to school on time each weekday. 

Let X be the number of days that Ruben arrives at school on time over a 10 week long school 

term. 

Calculate: 

a the mean of X b the standard deviation of X. 

12 A school volleyball team has 9 players, each of whom has a 75% chance of coming to any 

given game. The team needs at least 6 players to avoid forfeiting the game. 

a Find the probability that for a randomly chosen game, the team will: 

i have all of its players ii have to forfeit the game. 

b The team plays 30 games for the season. How many games would you expect the team to 

forfeit?
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13 It is observed that 3% of all batteries produced by a company are defective. 

a For a random sample of 20 batteries, calculate the probability that: 

i none are defective ii at least one is defective. 

b Let X be the number of defectives in a random sample of n batteries. 

i Write down an expression for P(X = 0). 

ii Calculate the smallest value of n such that P(X >1) > 0.3. 

REVIEW SET 20B 

1 Sally’s number of hits in each softball 

match has the probability distribution 

shown.      0‘07|0.14| k |0.46 0.08 | 0.02 

a State clearly what the random variable represents. 

b Find: ik il P(X>2) iii P(1<X<3) 

¢ Find the mode and median number of hits. 

  

  

2 Show that the following are valid probability mass functions: 
efl? 

1+e 

¢ Pl :10g<z;1>, £=1,2,3, .., 9 

3 The probability distribution of a random n 5t probability 

a Px)= e N b Px)=     

  

  

  

  

  

variable X is graphed alongside. Find: 

a the mode of X 8;1) 

b the median of X " 

¢ the expected value of X. 01 —_— 

0         
1 2 3 4 7 

4 P(X=12z)= % x a®~t, x=1,2, 3, ... isa probability mass function. 

a Show that a = 2. 

b Explain why the mode of the distribution is 1. 

5 The probabilities of Naomi and 

Rosslyn hitting each section of an 

archery target are shown alongside. 

a On a single shot, who is more 

likely to score: 

i 10 points 

ii at least 6 points?    b In the long run, who would you 

expect to score more points per Naomi Rosslyn 

shot?
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10 

12 

The numbers from 1 to 20 are written on tickets and placed in a bag. A person draws out a 

number at random. The person wins $3 if the number is even, $6 if the number is a square 

number, and $9 if the number is both even and square. 

a Calculate the probability that the player wins: 

i $3 ii $6 i $9 

b How much should be charged to play the game so that it is fair? 

Suppose X has the probability distribution alongside. 

Given that E(X) = 2.8, find @ and b. 

  

When a biased coin is tossed twice, the probability of getting two heads is 0.64 . 

a What is the probability of tossing a head with a single toss? 

b If the coin is tossed 10 times, determine the probability of obtaining: 

i exactly 6 heads ii atleast 6 heads. 

A 6-sided and 4-sided die are rolled simultaneously. Let X 

be the number of twos rolled. 

a Explain why X is not a binomial random variable. @ 

b Find the probability distribution of X. 

¢ Find: 

i the mean of X ii the standard deviation of X. 

Caleb is thrown a baseball 4 times. Let X be the number of times Caleb catches the ball. The 

probability distribution of X is: 

  

a Find E(X). 

b Let Y be the number of times Caleb drops the ball. Find E(Y'). 

The spinner alongside is spun 20 times. Let X be the number 

of threes spun. 

a Explain why X is a binomial random variable. 

b Find the mean and standard deviation of X. 

24% of visitors to a museum make voluntary donations. On a certain day the museum has 

175 visitors. 

a Find the expected number of donations. 

b Find the probability that: 

i less than 40 visitors make a donation 

ii between 50 and 60 (inclusive) visitors make a donation.
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13 Suvi plays a game involving 2 coins and a set of bowling pins. The coins are flipped and the 

number of heads that result is the number of attempts she gets to knock down the pins. If she 

knocks all of the pins down on a given attempt, it is called a “strike”. 

Suvi wins a prize worth $10 multiplied by the number of strikes she gets. On each attempt, the 

probability that Suvi gets a strike is % 

a Copy and complete this tree diagram of possible coin toss bowling 

outcomes. o 

b Let X be the number of strikes that Suvi gets. 92 heads <E 1 strike 

Find the probability distribution of X. 0 strikes 

¢ Calculate Suvi’s expected return per game. 
1 head Y 1 strike 

d Find Suvi’s expected gain if the game costs $5 0 strikes 

to play. Would you advise her to play the game 
. 0 heads —— 0 strikes 

many times?



  

The normal 

distribution 

Contents: A Introduction to the normal 

distribution 

Calculating probabilities 

The standard normal distribution 

Quantiles o
N
n
w
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OPENING PROBLEM 

A salmon breeder is interested in the distribution of the 

weight of female adult salmon, w. 

He catches hundreds of female adult fish and records 

their weights in a frequency table with class intervals 

3<w<3.1kg 3.1<w<32kg, 3.2 < w < 3.3kg, 

and so on. 

  

The mean weight is 4.73 kg, and the standard deviation is 0.53 kg. 

Things to think about: 

a Which of these do you think is the most likely distribution for the weights of the female adult 

  

salmon? 

A B C 
l frequency l frequency l frequency 

3 4 5 6 3 4 5 6 3 4 5 6 

w (kg) w (kg) w (kg) 

b How can we use the mean and standard deviation to estimate the proportion of salmon that 

weigh: 

i more than 6 kg ii between 4 kg and 6 kg? 

¢ How can we find the weight which: 

i 90% of salmon weigh less than il 25% of salmon weigh more than? 

In the previous Chapter we looked at discrete random variables and examined binomial probability 

distributions where the random variable X could take the non-negative integer values = =0, 1, 2, 3, 4, 

..., nfor some finite n € N. 

For a continuous random variable X, = can take any real value within some reasonable domain. There 

are infinitely many values X can take, and even if a measuring device enabled us to measure X exactly, 

the measurements of X from any two members of the population would never be identical. This means 

that the probability that X is exactly equal to any particular value is zero. 

For a continuous variable X, P(X =z) =0 for all . 

For example, the probability that an egg will weigh exactly 72.9 g is zero. If you were to weigh an egg 

on scales that measure to the nearest 0.1 g, a reading of 72.9 g means the weight lies somewhere between 

72.85 g and 72.95 g. No matter how accurate your scales are, you can only ever know the weight of an 

egg within a range. 

So, for a continuous variable X, we can only talk about the probability that a measured value lies in an 

interval. 

Remembering that P(X =) =0 forall , 

Plce< X <d)=Plc< X <d)=Pc<X <d) =P(c< X <d).
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Since P(X = z) = 0 for all z, we cannot use a 

probability mass function to describe the distribution. 

Instead we use a function called a probability density 

function or distribution curve. 

The value of the function is not a probability. Rather, 

probabilities are found by calculating areas under the 

probability density function curve for a particular 

interval. 

  

For a continuous random variable X, the probability density function is a function f(z) such that 

f(xz) >0 on its entire domain. 
d 

The probability that X lies in the interval ¢ < X < d is P(e < X <d) = / f(zx) de. 

b 
If the domain of the function is a < z < b, then / f(z)dz = 1. 

DISCUSSION 

What does the value of a probability density function at a particular point represent? 

  

    

  

A TO THE 
BUTION 

  

In this Chapter, we consider variables with symmetrical, 

bell-shaped distribution curves. We call this a normal 

distribution. It is the most important distribution in 

statistics. 

- >   

The normal distribution arises in nature when many different factors affect the value of the variable. 

For example, consider the apples harvested from an apple 

orchard. They do not all have the same weight. This variation 

may be due to genetic factors, the soil, the amount of sunlight 

reaching the leaves and fruit, weather conditions, and so on. 

The result is that most of the fruit will have weights centred 

about the mean weight, and there will be fewer apples that are 

much heavier or much lighter than this mean. 

  

Some examples of quantities that may be normally distributed or approximately normally distributed are: 

o the heights of 16 year old boys o the volumes of liquid in soft drink cans 

e the lengths of adult sharks e the weights of peaches in a harvest 

e the yields of corn or wheat e the life times of batteries
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EXERCISE 21A.1 

1 Which of the following appear to be normal distribution curves? 

A B C 

D E F 

. 
2 Explain why it is likely that the following variables will be normally distributed: 

a the diameter of wooden rods cut using a lathe 

b scores for tests taken by a large population 

¢ the amount of time a student takes to walk to school each day. 

3 Discuss whether the following variables are likely to be normally distributed. Sketch a graph to 

illustrate the possible distribution of each variable. 

a the ages of people at a football match 

the distances recorded by a long jumper 

the numbers drawn in a lottery 

the lengths of carrots in a supermarket 

the amounts of time passengers spend waiting in a queue at an airport 

the numbers of brown eggs in a sample of cartons which each contain a dozen eggs 

the numbers of children in families living in Cardiff, Wales 

the heights of buildings in a city. T 
W 

- 
0 

O 
A 

O 

THE NORMAL DISTRIBUTION CURVE 

Although all normal distributions have the same general bell-shaped curve, the exact location and shape 

of the curve is determined by: 

o the mean p which measures the centre of the distribution 

e the standard deviation o which measures the spread of the distribution. 

If X is a normally distributed random variable with mean p 

and standard deviation o, we write X ~ N(u, 02). 
o ~ is read “is distributed as”. 

We say that i and o are the parameters of the distribution. q 

The probability density function of X is: 

1 m—uz () Y « 
flz) = ! 62("), for z €R & 

o2 

The graph of this function is called the normal distribution V 

curve or just normal curve. 
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  INVESTIGATION 1 

In this Investigation, we will look at some interesting properties of the normal distribution curve 

  

  

2 

_ifezu 
il@) = ! 2 ( ‘ ) with the help of graphing software and calculus. e 

oV 2w 

What to do: 

1 Click on the icon to explore the normal distribution curve and how it changes DEMO 

when p and o are altered. 

a What effects do variations in p and o have on the curve? How do these 

relate to what p and o represent? 

Does the curve have a line of symmetry? If so, what is it? 

Is the function ever negative? Why is this important? 

  Discuss the behaviour of the normal curve as & — +o0. 

® 
O 

A 
O 

What do you think happens to the area under the curve as you change o and o? 

2 For a general normal curve, use calculus to find and classify the: 

a stationary point b inflection points. 

3 Sketch a normal distribution curve to illustrate your answers to 2. 

From the Investigation, you should have found that: 

e The normal curve is symmetrical 

about the vertical line = = p. 

e f(x)>0 forall z. 

e The z-axis is a horizontal 

asymptote. 

e The maximum occurs at = = j. 

  

e The points of inflection occur 

at x=p+o0, so the standard point of 
deviation is the horizontal inflection 

distance from the line of 

symmetry x = g to a point of 

inflection. 

  

       point of 
inflection      

  

s]
Y 

EXERCISE 21A.2 

1 Match each pair of parameters with the D 

correct normal distribution curve: 

a pu=>5 0=2 

b pu=15 0c=05 

¢ p=>5 0=1 

d p=15 c=3 

  
  

=
Y



510  THE NORMAL DISTRIBUTION (Chapter 21) 

2 Sketch the following normal distributions on the same set of axes. 

Mean (mL) | Standard deviation (mL 

  

  

3 Consider the distribution curve of X ~ N(y, 0?) where y =4 and o =3 shown: 

  

  

5 2 1 1 7 10 13 X 

Copy the above graph, and on the same set of axes sketch the distribution curve for: PRé:IAP:LE 

a N(u+2, 07 b N(u, (20)%) ¢ N(u+2, (20)%) 

  

d N(u—l, (%)2> e N(S—HL, ";) 

HISTORICAL NOTE 

The normal distribution was first characterised by Carl Friedrich Gauss in 

1809 as a way to rationalise his method of least squares for linear regression. 

  

  

In fact, the normal distribution curve is a special case of the Gaussian 

function which has the form: 

  

c 

2 
1 x—b 

f(z) =ae * ( ) where a, b, and ¢ are constants.   Since the normal distribution has such strong ties to Gauss, it is sometimes : 
called the Gaussian distribution. Carl Friedrich Gauss 

[0 I CALCULATING PROBABILITES 
INVESTIGATION 2 

In this Investigation we find the proportions of normally distributed data which lie within o, 20, and 

30 of the mean. 

What to do: 

1 Click on the icon to run a demonstration which randomly generates 1000 data DEMO 

values from a normal distribution with mean o and standard deviation o. Set 

=0 and o =1. 

    

2 Find the endpoints of the interval: 

a u—o to uto b u—20 to p+20 € p—30 to pu+30
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3 Use the frequency table provided to find the proportion of data values which lie between: 

a p—o and p+o b u—20 and p+ 20 ¢ p—30 and p+ 30 

4 Repeat 2 and 3 for values of i and o of your choosing. Summarise your answers in a table 

like the one below. 

  

  

  

What do you notice about the proportion of data values in each interval? 

6 To more accurately calculate proportions from a normal distribution, we can integrate the normal 

probability density function. However, we cannot easily write an antiderivative for 

  

2 
1(a—p L oa(=) -~ o 

e’ , so we calculate definite integrals numerically using technology. flz) =~ T 

a Suppose X is normally distributed with = 0 and o = 1. Use the GRAPHING PACKAGE 
graphing package to help you estimate the following probabilities with an 

appropriate definite integral: 

i Plu—o<X<pto) il P(p—20<X<p+20) 

ili P(p—30<X<p+30) 

b Repeat a for each of the values of p and o that you chose in 4. How do the definite 

integrals compare to your proportions from the simulation? 

  

¢ Does changing the mean and standard deviation of a normal distribution change the 

proportion of the population that lies within 1, 2, or 3 standard deviations of the mean? 

From the Investigation, you should have found that: 

For any population that is normally distributed with mean y and standard deviation o 

e approximately 0.68 or 68% of the population will lie between p — o and p+ o 

e approximately 0.95 or 95% of the population will liec between pu — 20 and p + 20 

e approximately 0.997 or 99.7% of the population will lie between g — 30 and p + 30. 

The proportion of data values that lie within different ranges relative to the mean are: 

   
      

  

     013%  2.15% 3413% | 3413% ! 215%  0.13% 

  

; i i i 13.59% | 
=30 w—20 Hn—o Iz p+o w20 o+ 30 
  

For any variable that is normally distributed, we can use the mean and standard deviation to estimate the 

proportion of data that will lie in a given interval. This proportion tells us the probability that a randomly 

selected member of the population will be in that interval.
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Example 1 o) Self Tutor 

A sample of cans of peaches was taken from a warehouse, and the contents of each can was 

weighed. The sample mean was 486 g with standard deviation 6 g. 

State the proportion of cans that weigh: 

a between 480 g and 486 g b more than 492 g. 

For a manufacturing process such as this, the distribution of weights is approximately normal. 

a ; About 34.13% of the cans are expected to weigh 

i between 480 g and 486 g. 

™los 474 430 486 492 408 soa - "eieht(® 

b ; About 13.59% +2.15% 4 0.13% = 15.87% of 
: the cans are expected to weigh more than 492 g. 

The probability of randomly 

selecting a can which weighs more 

" 468 474 430 486 492 498 504 than 492 g is approximately 0.1587.   
EXERCISE 21B.1 

1 Suppose X is normally distributed with mean 30 and standard deviation 5. 

a State the value which is: 

i 2 standard deviations above the mean ii 1 standard deviation below the mean. 

b Describe the following values in terms of the number of standard deviations above or below 

the mean: 

i 35 it 20 ili 45 

¢ Draw a curve to illustrate the distribution of X. 

d  What proportion of values of X are between 25 and 30? 

e Find the probability that a randomly selected member of the population will measure between 

35 and 40. 

2 Suppose the variable X is normally distributed 

according to the curve shown. 

a State the mean and standard deviation of X. 

b Find the proportion of values of X which are: 

i between 20 and 24 

il between 12 and 16 

iii greater than 28. 
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3 A school’s Grade 12 students sat for a Mathematics examination. Their marks were approximately 

normally distributed with mean 75 and standard deviation 8. 

a Copy and complete this bell-shaped curve, 

assigning scores to the markings on the 

horizontal axis. 

    

b What proportion of students would you expect to have scored: 

i more than 83 i less than 59 iii between 67 and 917 

4 State the probability that a randomly selected, normally distributed value: 

a lies within one standard deviation either side of the mean 

b is more than two standard deviations above the mean. 

Example 2 o) Self Tutor 

The chest measurements of 18 year old male rugby players are normally distributed with mean 

95 cm and standard deviation 8 cm. 

a From a group of 200 18 year old male rugby players, how many would you expect to have a 

chest measurement between 87 cm and 111 cm? 

b Find the value of & such that approximately 16% of chest measurements are below & cm. 

  

  
a About 34.13%-+34.13%+13.59% = 81.85% 34.13% 

of the rugby players have a chest measurement 

between 87 cm and 111 cm. 

So, we would expect 81.85% of 200 ~ 164 of 

the rugby players to have a chest measurement ! | | i ! 

between 87 cm and 111 cm. 79 87 95 103 111 

34.13% 

13.59%       > 

X (cm) 

b Approximately 16% of data lies more than 

one standard deviation below the mean. 

k is o below the mean p 

k=95-8 

=87 = 
     

5 The height of female students at a university is normally distributed with mean 170 cm and standard 

deviation 8 cm. 

a Find the percentage of female students whose height is: 

i between 162 cm and 170 cm ii between 170 cm and 186 cm. 

b Find the probability that a randomly chosen female student has a height: 

i less than 154 cm ii greater than 162 cm. 

¢ From a group of 500 female university students, how many would you expect to be between 

178 cm and 186 cm tall? 

d Estimate the value of k& such that 16% of the female students are taller than & cm.
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6 The weights of the 545 babies born at a maternity hospital last year were normally distributed with 

mean 3.0 kg and standard deviation 200 grams. Estimate the number that weighed: 

a less than 3.2 kg b between 2.8 kg and 3.4 kg. 

7 An industrial machine fills an average of 20000 bottles each day 

with standard deviation 2000 bottles. Assuming that production is 

normally distributed and the year comprises 260 working days, 

estimate the number of working days on which: 

a under 18000 bottles are filled 

b over 16000 bottles are filled 

¢ Dbetween 18000 and 24 000 bottles are filled. 

  

8 Two hundred lifesavers competed in a swimming race. Their times were normally distributed with 

mean 10 minutes 30 seconds and standard deviation 15 seconds. Estimate the number of competitors 

who completed the race in a time: 

a longer than 11 minutes b less than 10 minutes 15 seconds 

¢ Dbetween 10 minutes 15 seconds and 10 minutes 45 seconds. 

9 The weights of Jason’s oranges are normally distributed. 84% of the crop weighs more than 

152 grams and 16% weighs more than 200 grams. 

a Find p and o for the crop. 

b What percentage of the oranges weigh between 152 grams and 224 grams? 

10 When a particular variety of radish is grown without fertiliser, the weights of the radishes produced 

are normally distributed with mean 40 g and standard deviation 10 g. 

When these radishes are grown in the same conditions but with fertiliser added, their weights are 

also normally distributed, but with mean 140 g and standard deviation 40 g. 

a Determine the proportion of radishes grown: 

i without fertiliser which weigh less than 50 grams 

il with fertiliser which weigh less than 60 grams. 

b Find the probability that a randomly selected radish weighs between 20 g and 60 g, if it is 

grown: 

i with fertiliser il without fertiliser. 

¢ One radish grown with fertiliser and one radish grown without fertiliser are selected at random. 

Find the probability that both radishes weigh more than 60 g. 

USING TECHNOLOGY 

When calculating normal distribution probabilities, we have so far only considered numbers that are a 

whole number of standard deviations from the mean. 

To calculate other probabilities, we could use definite integrals of the normal 5 

probability density function. However, this function does not have an indefinite 

integral, so we need to use a numerical approximation. Your graphics calculator CALCULATOR 

has built-in functions to calculate these integrals. INSTRUCTIONS
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Example 3 ) Self Tutor 

The variable X is normally distributed with mean 40 and standard deviation 10. Find: 

a P(37 < X <48) b P(X > 45) ¢ P(X <26) 

Illustrate your answers. 

a To find P(37 < X < 48), we set the lower bound to 37 and the upper bound to 48. 

  

  

Casio fx-CG50 Casio fx-CG50 

(d7c)Real 
Normal C.D Normal C.D 
Data :Variable P =0.40605602 
Lower :87 z:Low=-0.3 
Upper 148 z:Up =0.8 
o ;10 

ave Res:None ;4:0 4:18 

37 = 

  

P(37 < X < 48) =~ 0.406 

b To find P(X > 45), we use a very high value such as 10% to represent the upper bound. 

TI-84 Plus CE TI-84 Plus CE 
N LN A i] NORMAL FLOAT AUTO REAL DEGREE MP 1] 

normalcdf (45,1e99,40,10) 
lower:45 9.3085375322 
upper:1e99 
u:40 
0:10 
Paste 

40 45 X 

  

P(X > 45) ~ 0.309 

¢ To find P(X < 26), we use a very low value such as —10%° to represent the lower bound. 

TI-nspire TI-nspire 

1.1 ]» *Unsaved w {HEY | *Unsaved w 

| Normal Cdf normCdf{-1.£99,26,40,10) 0.080757 
  

Lower Bound: | 
  

  

Upper Bound: 
  

  w 

o 
  

        
Cancel 
  

  

P(X < 26) ~ 0.081     
  

EXERCISE 21B.2 

1 Suppose X is normally distributed with mean 60 and standard ‘A continuous random variable 

deviation 5. Find: X can never be exactly 64, so 

a P(60 < X <65) b P(62< X <67) P(X > 64) =P(X > 64). 

¢ P(X >64) d P(X <68) 

e P(X <61) f P(57.5 < X <€62.5) 

Illustrate your answers.  
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Suppose X is normally distributed with mean 37 and standard deviation 7. 

a Use technology to find P(X > 40). 

b Hence find P(37 < X <40) without technology. 

A machine produces metal bolts. The lengths of these bolts have a normal distribution with mean 

19.8 cm and standard deviation 0.3 cm. 

If a bolt is selected at random from the machine, find the probability that it will have a length 

between 19.7 cm and 20 cm. 

The speed of cars passing a supermarket is normally distributed with mean 46.3 kmh~! and standard 

deviation 7.4 kmh~!. Find the probability that a randomly selected car is travelling: 

a between 50 and 65 kmh~! b slower than 60 kmh™! ¢ faster than 50 kmh~!. 

Eels are washed onto a beach after a storm. Their lengths have a normal distribution with mean 

41 cm and standard deviation 5.5 cm. 

a If an eel is randomly selected, find the probability that it is at least 50 cm long. 

b Find the percentage of eels measuring between 40 cm and 50 cm long. 

¢ How many eels from a sample of 200 would you expect to measure at least 45 cm in length? 

Max’s customers put money for charity into a collection box on the front counter of his shop. The 

weekly collection is approximately normally distributed with mean $40 and standard deviation $6. 

a On what percentage of weeks would Max expect to collect: 

i between $30 and $50 i at least $50? 

b How much money would you expect Max to collect in two years? 

The amount of petrol bought by customers at a petrol station is normally distributed with mean 36 L 

and standard deviation 7 L. 

a What percentage of customers buy: 

i less than 28 L of petrol il between 30 L and 40 L of petrol? 

b On a particular day, the petrol station has 600 customers. 

i How much petrol would you expect the petrol station to sell on this day? 

il How many customers would you expect to buy at least 44 L of petrol? 

The times Enrique and Damien spend working out at the 

gym each day are both normally distributed with mean 

45 minutes. The standard deviation of Enrique’s times is 

9 minutes, and the standard deviation of Damien’s times 

is 6 minutes. 

a On what percentage of days does: 

i Enrique spend between 32 and 40 minutes at 

the gym 

il Damien spend less than 55 minutes at the gym? 

  

b Tomorrow, who do you think is more likely to 

spend: 

i atleast 1 hour at the gym 

ii between 40 minutes and 50 minutes at the gym? 

Explain your answers. 

¢ Perform calculations to check your answers to b.
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Example A '1>)) Self Tutor 

The times taken by students to complete a puzzle are normally distributed with mean 28.3 minutes 

and standard deviation 3.6 minutes. Calculate the probability that: 

  

a arandomly selected student took at least 30 minutes to complete the puzzle 

b out of 10 randomly selected students, 5 or fewer of them took at least 30 minutes to complete 

the puzzle. 

a Let X denote the time for a student to complete the puzzle. L L 

X ~ N(28.3, 3.62) normalcdf (30, 1£99,28.3,3.» 

P(X > 30) ~ 0.31838 
~ 0.318 

b Let Y denote the number of students who took at least NORHAL FLORT AUTO REAL RADIAN MP 

30 minutes to complete the puzzle. normalcdf (30,1£99,28.3,3.» 
3183840984 

Y ~ B(10, 0.31838) 

P(Y < 5) ~ 0.938 

            
   

B(n, p) is the binomial distribution 
with n independent trials, each with 

probability of success p. 

  

      

9 Apples from a grower’s crop were normally distributed with mean 173 grams and standard deviation 

34 grams. Apples weighing less than 130 grams were too small to sell. 

a Find the percentage of apples from this crop which were too small to sell. 

b Find the probability that in a picker’s basket of 100 apples, more than 10 apples were too small 

to sell. 

10 People found to have high blood pressure are prescribed a course 

of tablets. They have their blood pressure checked at the end of 

4 weeks. The drop in blood pressure over the period is normally 

distributed with mean 5.9 units and standard deviation 1.9 units. 

a Find the proportion of people who show a drop of more 

than 4 units. 

b Eight people taking the course of tablets are selected at 

random. Find the probability that at least six of them will 

show a drop in blood pressure of more than 4 units. 
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HISTORICAL NOTE 

The French scholar Pierre-Simon, Marquis de Laplace (1749 - 1827) was the first to calculate 
oo o0 

/ e da = /7. Using this result, it can be shown that / f(z)dx =1 where f(x) is the 
—00 —o0 

normal probability density function. 

So, although we cannot calculate normal probabilities exactly with integration, we know and can 

prove that the total area under the normal curve is 1. 

[ 00 THE STANDARD NORMAL DISTRIBUTION 
Suppose a random variable X is normally distributed with mean y and standard deviation o. 

T —p — For each value of = we can calculate a z-score using the algebraic transformation z =   

This algebraic transformation is known as the Z-transformation. 

  INVESTIGATION 3 

In this Investigation we consider how the z-scores for a distribution are themselves distributed. 

What to do: 

1 Consider the z-values: 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7. 

a Draw a histogram of the xz-values to check that the distribution is approximately normal. 

b Find the mean p and standard deviation o of the z-values. 

¢ Calculate the z-score for each z-value. 

d Find the mean and standard deviation of the z-scores. 

2 Click on the icon to access a demo which randomly generates data values from a DEMO 

normal distribution with given mean and standard deviation. The z-score of each 

data value is calculated, and histograms of the original data and the z-scores are 

also shown. 

a Generate samples using various values of x and o of your choosing. 

b Record the mean and standard deviation of the z-scores in a table like the one below. 

z-values z-scores 

  

Mean | Standard deviation Standard deviation 

  

¢ How does the histogram of the z-scores generally compare with the histogram of the 

z-values? 

d What conclusions can you make about the distribution of the z-scores?
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From the Investigation, you should have found that the z-scores were normally distributed with mean 0 

and standard deviation 1. 

  If X ~N(u 02 and Z=—— then Z ~ N(0, 12). 
o 

No matter what the parameters p and o of the original X -distribution are, we THE 
Z-TRANSFORMATION 

always end up with the same Z-distribution, Z ~ N(0, 12). 

Click on the icon to see why the Z-transformation works. 

The distribution Z ~ N(O0, 12) is called the standard normal distribution or Z-distribution. 

The diagram below shows how z-scores are related to a general normal curve: 

        2.15% 0.13% 

  

     T 13.59% | i 13.59% 1 
z-value n—30 =20 pn—o 0 nto 20 1+ 30 

z-score -3 -2 -1 0 1 2 3 

  

Notice that the value of the z-score corresponds to the coefficient of ¢ in the z-value. 

The z-score of x is the number of standard deviations z is from the mean. 

For example: 

e if z=1.84, then z is 1.84 standard deviations to the right of the mean 

e if z=—0.273, then x is 0.273 standard deviations to the /eft of the mean. 

z-scores are particularly useful when comparing two populations with different ;2 and o. However, these 

comparisons will only be reasonable if both distributions are approximately normal. 

Kelly scored 73% in History, where the class mean was 68% and the standard deviation was 10.2%. 
In Mathematics she scored 66%, where the class mean was 62% and the standard deviation was 

6.8%. 

In which subject did Kelly perform better compared with the rest of her class? 

  

  

Assume the scores for both subjects were normally distributed. 
  

73 — 68 
Kelly’s z-score for History = ~ 0.490   

66 — 62 
Kelly’s z-score for Mathematics = ~ 0.588   

Kelly’s result in Mathematics was 0.588 standard deviations above the mean, whereas her result 

in History was 0.490 standard deviations above the mean. 

Kelly’s result in Mathematics was better compared to her class, even though her percentage 

was lower.    
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EXERCISE 21C.1 

1 In Emma’s classes, the exam results for each subject Subject -n 

are normally distributed with the mean g and 

    

standard deviation o shown in the table. Epeiy 

a Find the z-score for each of Emma’s scores. fa 

b Arrange Emma’s subjects from best to worst Geography 

in terms of the z-scores. Biology 
¢ Explain why the z-scores are a reasonable way Mathematics 

to compare Emma’s performances with the rest 

of her class. 

2 n The table alongside shows Sergio’s results in 

Physics 73% 78% | 10.8% his final examinations, along with the class 

Chemistry 7% 79% | 11.6% means and standard deviations. 

Mathematics 76% 74% | 10.1% a Find Sergio’s z-score for each subject. 

German 91% 86% | 9.6% b Hence arrange Sergio’s performances in 

Biology 58% 62% | 5.2% each subject from best to worst. 
  

3 At a swimming competition, Frederick competed in the 50 m freestyle, 100 m backstroke, 200 m 

breaststroke, and 100 m butterfly events. His times are summarised in the table, along with the 

event means and standard deviations. 

Event Time (seconds) | p (seconds) | o (seconds) 

50 m freestyle 

100 m backstroke 

  

200 m breaststroke 

100 m butterfly 

  

a Calculate the z-scores for each of Frederick’s times. 

b Explain why in this case a lower z-score indicates a better performance. 

¢ Hence arrange Frederick’s performances in each event from best to worst. 

CALCULATING PROBABILITIES USING THE Z-DISTRIBUTION 

Consider the variables X ~ N(u, 02) and Z ~ N(0, 12). 

Forany 1, x5 € R, @1 < 29, with corresponding z-scores z; = 

o P(X>uz)=PZ> 

AL 

    

xr] — xro — 

L7 K and 29 = 22 . 
o g 

e P(X <
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Example 6 «) Self Tutor 

Use technology to illustrate and calculate: 

a P(—0.41< Z <0.67) b P(Z <1.5) ¢ P(Z>0.84) 

  

—0.41 0.67 

NORMAL FLOAT AUTO REAL RADIAN MP NORMAL FLOAT AUTO REAL RADIAN MP L L L L 

normalcdf(-0.41,0.67,0,1) normalcdf(-199,1.5,0,1) normalcdf(0.84,1e99,0,1) 
0.407668162 9.9331927713 0.2004541388 

  

P(—0.41 < Z < 0.67) P(Z < 1.5) ~0.933 P(Z > 0.84) =~ 0.200 

~ 0.408 

  

  
EXERCISE 21C€.2 

1 Consider the normal distribution curve below. 

     

{ 34.13% | 34.13% | 
: i i 0.13% 

       T 13.50% | §13.50% 
  

z-value pw—30 n—20 p—o N nto w420 pn+ 30 

z-score -3 -2 -1 0 1 2 3 

Use the diagram to calculate the following probabilities. In each case sketch the PRINTABLE 

Z-distribution and shade in the region of interest. 

a P(-1<Z<1) b P(-1<Z<3) ¢ P(-1<Z<0) 

d P(Z<2) e P(-1<2) f P(Z=1)
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2 Given X ~ N(u, 0?) and Z ~ N(0, 1%), determine the values of a and b such that: 

a Plpu—o<X<p+20)=Pla<Z<b) 

b P(p—050 <X <p)=Pla<Z<b) 

¢ PO0KSZ2<3)=P(p—ac <X < pu+bo) 

3 If Z ~N(0, 12), find the following probabilities using technology. In each case sketch the region 

under consideration. 

a P(05<Z<1) b P(—0.86 < Z < 0.32) ¢ P(—23<Z<15) 

d P(Z<12) e P(Z < —0.53) f P(Z>13) 

g P(Z>-14) h P(Z>4) i P(-05<Z<0.5) 

i P(—1.960 < Z < 1.960) k P(—1.645 < Z < 1.645) I P(|Z|>1.645) 

&= o Suppose X is normally distributed with mean ;. and standard deviation o. 

i Explain why P(p—30 <X <pu+20)=P(-3<Z<2). 

il Hence find P(u—30 < X < pu—+20). 

b For a random variable X ~ N(y, (72), find: 

i P(u—20 <X <p+1.50) il P(p—250 <X <p—050) 

5 Suppose X is normally distributed with mean p = 58.3 and standard deviation o = 8.96. 

a Let the z-score of x1 = 50.6 be z; and the z-score of 22 = 68.9 be 25. 

i Calculate z; and z». il Find P(z; < Z < 29). 

b Check your answer by calculating P(50.6 < X < 68.9) directly using technology. 

HISTORICAL NOTE 

The normal distribution has two parameters ;1 and o, whereas the standard normal distribution has 

no parameters. This means that a unique table of probabilities can be constructed for the standard 

normal distribution. 

Before graphics calculators and computer packages, it was impossible to calculate probabilities for a 

general normal distribution N(p, 02) directly. 

Instead, all data was transformed using the Z-transformation, and the standard normal distribution 

table was consulted for the required probabilities. 

DI ouakmes 
Consider a population of crabs where the length of a shell, X mm, is 

normally distributed with mean 70 mm and standard deviation 10 mm. 

A biologist wants to protect the population by allowing only the largest 

5% of crabs to be harvested. He therefore wants to know what length 

corresponds to the 95th percentile of crabs. 

To answer this question we need to find & such that P(X < k) = 0.95. 

The number k is known as a quantile. In this case it is the 95% 

quantile.  
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When finding quantiles, we are given a probability and are asked to calculate 

the corresponding measurement. This is the inverse of finding probabilities, so 
. . GRAPHICS we use the inverse normal function on our calculator. CALCULATOR 

INSTRUCTIONS 

«) Self Tutor 

A population of crabs has shell length X mm. X is normally distributed with mean 70 and standard 

deviation 10. Find % for which P(X < k) =0.95. 

     
    
   

   

    

    

Example 7 

    Casio fx-CG50 TI-84 Plus CE 
G O T 1 WUnsaved v 

Inverse Normal . 
Data :Variable 
Tail ‘Left area:0.95 
Area :0.95 wi7e 
c :10 Tail: (EEN CENTER RIGHT 

:70 Paste b 

(None N3N 

Inverse Normal 
  

  

  

  

  

      

[ NORMAL FLOAT AUTO REAL RADIAN MP n 

Inverse Normal = invNorm(®.95,70,10,LEFT) xInv=86.4485363 86. 44853626 

If P(X <k)=0.95 then 

k ~ 86.45 

The 95% quantile corresponds to a shell width of 

86.45 mm.   
When using the HP Prime or TI-nspire calculators, we 

must always use the area to the lefi of k. Therefore, to 

find k such that P(X > k) = 0.7, we instead find % such 

that P(X <k)=1-0.7=0.3. 

EXERCISE 21D.1 

1 Suppose X is normally distributed with mean 20 and standard deviation 3. Illustrate with a sketch 

and find % such that: 

a P(X<k)=03 b P(X <k)=09 < 

d P(X>k)=02 e P(X <k)=0.62 f 

( 
( 

P(X <k)=05 
P(X >k) =013 V

o
A
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Suppose Z has the standard normal distribution. Illustrate with a sketch and find % such that: 

a P(Z<k)=081 b P(Z <k)=0.58 ¢ P(Z<k)=017 

d P(Z>k)=095 e P(Z>2k)=09 f P(Z>2k)=041 

Suppose X is normally distributed with mean 30 and standard deviation 5, and P(X < a) = 0.57. 

a Using a diagram, determine whether a is greater or less than 30. 

b Use technology to find a. 

¢ Without using technology, find: 

i P(X >a) i P30 X <a) 

Given that X is normally distributed with mean 15 and standard deviation 3, find & such that: 

a P(X<k)=02 b P(X>k) =01 
¢ PI5—k< X <15+k)=0.9 

Suppose X is normally distributed with mean 80 and standard deviation 10. 

a Find P(X < 72). 

b Hence find k such that P(72 < X <k)=0.1. 

Given that X ~ N(45, 8), find a such that: 

a P35<X<a)=025 b Pla<X<50)=0.15 ¢ Pla< X <54) =06 

The lengths of a fish species are normally distributed 

with mean 35 cm and standard deviation 8 cm. The 

fisheries department has decided that the smallest 

10% of the fish are not to be harvested. What is 

the size of the smallest fish that can be harvested? 

  

The lengths of screws produced by a machine are normally distributed with mean 75 mm and 

standard deviation 0.1 mm. 1% of the screws are rejected because they are too long. What is the 

length of the smallest screw to be rejected? 

The volumes of cool drink in bottles filled by a machine are normally distributed with mean 503 mL 

and standard deviation 0.5 mL. 1% of the bottles are rejected because they are underfilled, and 2% 

are rejected because they are overfilled. They are otherwise kept for sale. Find, correct to 1 decimal 

place, the range of volumes in the bottles that are kept. 

Abbey goes for a morning walk as long as the temperature is not too cold and not too hot. The 

morning temperatures are normally distributed with mean 20°C and standard deviation 5°C. Given 

that the lower limit of Abbey’s walking temperatures is 11°C, and that she goes for a walk 95% of 

the time, find the upper limit of Abbey’s walking temperatures. 

FINDING AN UNKNOWN MEAN OR STANDARD DEVIATION 

We always need to convert to z-scores if we are trying to find an unknown mean g or 

standard deviation o.
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Example 8 ) Self Tutor 

The weights of an adult scallop population are known to be normally distributed with a standard 

deviation of 5.9 g. If 15% of scallops weigh less than 58.2 g, find the mean weight of the 

population. 

Let the mean weight of the population be p g. 

If X g denotes the weight of an adult scallop, then 15% 

X ~ N(u, 5.9%). 

P(X < 58.2) =0.15 

  

  p(z< 22 *“) =0.15 
NORMAL FLOAT AUTO REAL RADIAN MP 

. . . Since we do not know 
Using the inverse normal function inNorm(@.15,0.1) i treaih 

for N(0, 12), normal function directly. 

58.2 — 
  

5 
~ —1.0364 

58.2 —p = —6.1 
A 64.3 

| @ So, the mean weight is approximately 64.3 g. Y 

) Self Tutor 
Find the mean and standard deviation of a normally distributed random variable X for which 

P(X <20)=0.1 and P(X >29)=0.15. 

X ~ N(y, %) where we have to find y and o. 
1 Al 

We start by finding 2, and 2, which correspond 0 A 015 
to 21 =20 and w9 = 29. 

x; =20 p x2=29 

  

  

  

    

    

2 2z 

Now P(X <z1)=0.1 and P(X <x3)=0.85 

p(z<2) —01 P(z<2E) —0ss 
o o 

2= 200_ B~ —1.282  {technology} o= 290_ K ~1.036 {technology} 

20—~ 12820 ... (1) 20—~ 1.0360 ... (2) 

Solving (1) and (2) simultaneously we get p~ 25.0 and o =~ 3.88.       
EXERCISE 21D.2 

1 Suppose X is normally distributed with standard deviation 6, and that P(X < 40) =0.2. 

a Would you expect the mean of X to be greater or less than 40? Explain your answer. 

b Find the mean of X.
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Suppose X is normally distributed with mean 15 and P(X > 20) = 0.1. Find the standard deviation 

of X. 

The 1Qs of students at a school are normally distributed with a standard deviation of 15. If 20% of 

the students have an IQ higher than 125, find the mean IQ of students at the school. 

The distances an athlete jumps are normally distributed 

with mean 5.2 m. If 15% of the athlete’s jumps are less 

than 5 m, what is the standard deviation? 

The weekly income of a bakery is normally distributed 

with mean €6100. If the weekly income exceeds €6000 

85% of the time, what is the standard deviation? 

The arrival times of buses at a depot are normally 

distributed with standard deviation 5 minutes. If 10% of 

the buses arrive before 3:55 pm, find the mean arrival time 

of buses at the depot. 

  

Find the mean and standard deviation of a normally distributed random variable X for which 

P(X >35)=0.32 and P(X <8)=0.26. 

a Find the mean and standard deviation of a normally distributed random variable X for which 

P(X >80)=0.1 and P(X < 30)=0.15. 

b In a Mathematics examination it was found that 10% of the students scored at least 80, and 15% 

scored 30 or less. Assuming the scores are normally distributed, what percentage of students 
scored more than 50? 

The diameters of pistons manufactured by a company are normally distributed. Only those pistons 

whose diameters lie between 3.994 cm and 4.006 cm are acceptable. 

a Find the mean and the standard deviation of the distribution if 4% of the pistons are rejected 

as being too small, and 5% are rejected as being too large. 

b Determine the probability that the diameter of a randomly chosen piston measures between 

3.997 cm and 4.003 cm. 

Circular metal tokens are used to operate a washing machine in a laundromat. The diameters of 

the tokens are normally distributed, and only tokens with diameters between 1.94 and 2.06 cm will 

operate the machine. In the manufacturing process, 2% of the tokens were made too small, and 3% 

were made too large. 

a Find the mean and standard deviation of the distribution. 

b Find the probability that at most one token out of a randomly selected sample of 20 will not 

operate the machine. 

¢ Jake has 3 tokens. Find the probability that they all have diameter greater than 2 cm. 

L7\ 

Click on the icon to play a card game for the normal distribution. CARD GAME
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INVESTIGATION 4 

In the previous Chapter, we saw how the binomial distribution arises from considering the number 

of “successes” in a fixed number of independent trials of an experiment. 

Suppose X ~ B(n, p) is the number of successes in n independent trials, each 

with probability of success p. The probability of getting x successes is: 

P(X =z)=(0)p"(1—p)"~® where 2=0,1,2,..,n 

You will have used this formula to calculate probabilities for binomial random variables in cases 

where the number of trials n is relatively small. As n increases, the probability becomes more 

n! 
difficult to calculate. This is because the binomial coefficient (Z) e fi becomes very 

ri(n—x) 

large. 

What to do: 

1 Click on the icon to access a demonstration which draws the probability DEMO 

distribution of X ~ B(n, p). 

a Set p=0.5 and use the sliders to change the value of n. Describe what 

happens to the distribution of X as n increases. 

b Repeat a for p equal to: 

i 025 ii 0.1 iii 0.75 iv 0.9 

Comment on your observations. 

¢ Do you think that it would be reasonable to approximate the binomial distribution with a 

normal distribution? Explain your answer. 

d What should be the mean and standard deviation of this normal distribution? 

2 Consider X ~ B(50, 0.2) and its normal approximation Xom ~ N(p, 02). 

a Write down expressions for 4 and o. 

    

  

b Suppose we want to calculate the probability 

of 15 successes. The diagram alongside shows 

part of the probability distribution of X 

with the normal distribution curve of Xjom 

drawn over the top. Explain why 

P(X = 15) ~ P(14.5 < Xpom < 15.5). 
¢ Describe how you would estimate the 

following using the normal approximation: 

i P(X<10) i P(X <25) 
ili P(10 < X < 25) 14 15 16 X 

normal curve 

/ for Xorm 

  
3 It is known that 2% of tyres manufactured by a company are unfit for sale. A quality inspector 

randomly sampled 500 tyres. Use a normal approximation to estimate the probability that at 

least 10 tyres in the sample will be unfit for sale.
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REVIEW SET 21A 

1 Discuss whether the following variables will be normally distributed: 

a the time students take to read a novel 

b the amount spent on groceries at a supermarket. 

The amount of juice Simon can squeeze from his 

lemons is normally distributed with mean 35 mL 

and standard deviation 5 mL. 

a Copy and complete this curve. 

b What percentage of the lemons will produce: 

i between 25 mL and 35 mL of juice : ‘ : ‘ : 

ii atleast 45 mL of juice? X (mL) 

  

Sketch, on the same set of axes, the standard normal distribution Z ~ N(0, 12) and the normal 

curves N(3, 22), N(5,2%), and N(1, 4%). 

The average height of 17 year old boys is normally distributed with mean 179 cm and standard 

deviation 8 cm. Calculate the percentage of 17 year old boys whose heights are: 

a more than 195 cm b between 171 cm and 187 cm 

¢ between 163 cm and 195 cm. 

The weight of the edible part of a batch of Coffin Bay oysters is normally distributed with mean 

38.6 grams and standard deviation 6.3 grams. 

a Find the percentage of oysters that weigh between 30 g and 40 g. 

b From a sample of 200 oysters, how many would you expect to weigh more than 50 g? 

The results of a test are normally distributed. The z-score of Harri’s test score is —2. 

a Interpret this z-score with regard to the mean and standard deviation of the test scores. 

b What percentage of students obtained a better score than Harri? 

¢ The mean test score was 61 and Harri’s actual score was 47. Find the standard deviation 

of the test scores. 

A random variable X is normally distributed with mean 20.5 and standard deviation 4.3 . Find: 

a P(X >22) b P(18 < X <22) ¢ ksuchthat P(X <k)=0.3. 

The distribution of weights in grams of bags of sugar filled by a machine is X ~ N(503, 22). 

Bags less than 500 grams are considered underweight. 

a What percentage of bags are underweight? 

b If a quality inspector randomly selects 20 bags, what is the probability that 2 or fewer bags 

are underweight? 

The life of a Xenon-brand battery is normally distributed with mean 33.2 weeks and standard 

deviation 2.8 weeks. 

a Find the probability that a randomly selected battery will last at least 35 weeks. 

b For how many weeks can the manufacturer expect the batteries to last before 8% of them 

fail? 

Suppose X is normally distributed with mean 25 and standard deviation 6. Find & such that: 

a P(X<k)=07 b P(X >k)=04 ¢ P20 X <K) =03
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11 A random variable X is normally distributed with standard deviation 2.83. Find the probability 

that a randomly selected score from X will differ from the mean by less than 4. 

12 The distribution curve shown corresponds to 

X ~ N(u, 0%). Area A = Area B = 0.2. 

a Find p and o. 

b Calculate: A B 
i P(X <35 i P(23<X<30) 

S X 
13 Machines A and B both produce nails whose lengths are normally distributed. The lengths of 

nails from machine A have mean 50.2 mm and standard deviation 1.1 mm. The lengths of nails 

from machine B have mean 50.6 mm and standard deviation 0.8 mm. Nails which are longer 

than 52 mm or shorter than 48 mm are rejected. 

a Find the probability of randomly selecting a nail that has to be rejected from: 

i machine A ii machine B. 

b A quality inspector randomly selects a nail from a randomly chosen machine. Find the 

probability that the nail was made by machine A given that it should be rejected. 

LR Al 

1 Sketch these normal distributions Standard deviation (cm) 

on the same set of axes: 

  

  

2 The variable X is normally distributed with graph 

shown. 

a State the mean and standard deviation of X. 

b What percentage of values of X are: 

i between 27 and 32 

ii less than 37 : 
il greater than 42? 17 22 

     
27 32 37 42 47 X 

3 The contents of soft drink cans are normally distributed with mean 327 mL and standard deviation 

4.2 mL. 

a Find the percentage of cans with contents: 

i less than 318.6 mL ii between 322.8 mL and 339.6 mL. 

b Find the probability that a randomly selected can contains between 327 mL and 331.2 mL. 

4 The arm lengths of 18 year old females are normally distributed with mean 64 cm and standard 

deviation 4 cm. 

a Find the percentage of 18 year old females whose arm lengths are: 

i between 61 cm and 73 cm ii greater than 57 cm. 

b Find the probability that a randomly chosen 18 year old female has an arm length in the 

range 50 cm to 65 cm. 

¢ The arm lengths of 70% of the 18 year old females are more than x cm. Find the value of .
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The random variable Z has the standard normal distribution N(0, 1?). Find the value of k for 

which P(—k < Z <k)=0.95. 

Suppose X is normally distributed with mean 50 and standard deviation 7. Find: 

a P(46 < X < 55) b P(X >60) ¢ Kk suchthat P(X > k) =0.23. 

In a competition to see who could hold their breath underwater the longest, the times in the 

preliminary round were normally distributed with mean 150 seconds and standard deviation 

12 seconds. If the top 15% of contestants went through to the finals, what time was required to 

advance? 

For X ~ N(12, 22), find @ such that: 

a P(X <a)=0.07 b P(X >a)=02 ¢ Pla<X<11)=0.1 

X is normally distributed with standard deviation 2.1. Let Z ~ N(0, 12). 

Given that P(X >5.4) = P(Z > —1.7), find the mean of X. 

A normally distributed random variable X has 

the distribution curve shown. Its mean is 50, and 

P(X < 90) ~ 0.975. 

Find the shaded area. 

50 80 X 

On an ostrich farm the weights of the birds are found to be normally distributed. The weights 

of the females have mean 78.6 kg and standard deviation 5.03 kg. The weights of the males 

have mean 91.3 kg and standard deviation 6.29 kg. 

a Find the probability that a randomly selected: 

i male will weigh less than 80 kg ii female will weigh less than 80 kg 

ili female will weigh between 70 and 80 kg. 

b 20% of females weigh less than & kg. Find k. 

The middle 90% of the males weigh between a kg and b kg. Find the values of a and b. 

Q 
a 

In one field there are 82% females and 18% males. One of these ostriches is selected at 

random. 

Calculate the probability that the ostrich weighs less than 80 kg. 

The weight of an apple in an apple harvest is normally distributed with mean 300 grams and 

standard deviation 50 grams. Only apples with weights between 250 grams and 350 grams are 

considered fit for sale. 

a Find the percentage of apples fit for sale. 

b In a sample of 100 apples, what is the probability that at least 75 are fit for sale? 

Giovanni and Beppe are both carrot farmers. The lengths of Giovanni’s carrots are normally 

distributed with mean 22 cm and standard deviation 3.4 cm. The lengths of Beppe’s carrots are 

also normally distributed, with mean 23.5 cm and standard deviation 4.2 cm. 

a Find the probability that a carrot is longer than 20 cm, given it comes from: 

i Giovanni’s farm ii Beppe’s farm. 

b A buyer randomly selects a carrot from each farmer’s crop. Calculate the probability that 

neither carrot is longer than 20 cm.
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EXERCISE 1A B 

1 a2 b6 <24 d120 e 720 f 3628800 

2 a4 b 7 < o d 8 e o f B 
4! 5! 6! 11! 

g 2 
316! 419! 5110! 

3 a7 b 56 c 132 d 120 e 45 f 4950 

4 an, n>1 nz=0 

(n+1)n, n>1 

EXERCISE 1B W 

1 a p®+3p2¢+3pg®+¢> b 23 +322+3z+1 

— 922 4 272 — 27 d 8+ 12z + 622 + 2 
f 

h 

b (n+2)(n+1), 

a 

2723 — 2722 + 9z — 1 82 + 6022 + 150z + 125 

8a® —12a%b + 6ab* — b h 272° — 92% + 2 — - w
 

0 
n 

6 1 
8x3 4 12z + — += i zv/T—3z+3yT—1 

x x 

3 1 
26 + 6z + 1222 + 8 lab =320+ 5 — — 

x x 

1+4z+61 +4z + 2t 

p* — 4p3q + 6p2q® — 4pg® + ¢* 
z* — 823 + 2422 — 32z + 16 
81 — 108z + 54a? — 1223 + 4 
1+ 8z + 2422 + 322 + 162* 
162* — 962> + 21622 — 216z + 81 
162* + 3223b + 242262 + 8zb 4 b* 

1 4 
+42? + 6+ — + — z* T +z2 povy S 

W 
a
®
d
Q
n
a
 

O
C
o
 
x
 

8 1 
— 3222 424 — > + o 

i a®—3a2b + 3ab? — b3 

i a* — 4a3b+ 6a%b? — 4ab® + b* 
b The terms are the same, except for their signs. The signs in 

the expansions of (a4 b)® and (a + b)* are all positive, 

whereas the signs in the expansions of (a—b)? and (a—b)* 

start with a positive and then alternate (a > 0, b > 0). 

4 al 5 10 10 5 1 

b (a+b)° =a® + 5a*b + 10a%b? + 10a2b> + 5ab* + b° 

i 2%+ 10z* + 4023 + 8022 + 80z + 32 
i 1—5z+102? — 102% + 5z — 2% 

1+ 10z + 4022 + 8023 + 80z + 322° 
iv 25 — 10z%y + 4023y? — 8022y> + 80zy* — 32y° 
v 2104528 + 1026 + 1024 + 522 + 1 

10 5 1 
vi 25— 5234+ 100 — — + 

z x3 b 

5 al 6 15 20 15 6 1 
b (a+b)% =a®+6a°b + 15ab? + 20a°b° + 15a%6* 

+ 6ab® + b° 

¢ i 204 122° 4 60zt + 1602 + 24022 + 192z + 64 
i 642 — 1922° + 2402* — 16023 + 60z — 12z + 1 

15 6 1 
iii 28 + 62* + 1522 +20+ 5 +—5+—5 

xT T T 

i 16z 

  

6 a T+5V2 b 161+ 725 ¢ 232 — 164v2 
7 a 64+ 192z + 24022 + 1602° + 60z* 4 1225 + 26 

b 65.944160 601 201 
8 a 22% + 1lz* + 2423 4 2622 + 142 + 3 

b 8z* 4 423 — 622 — 5z — 1 

9 a 270 b 4320 

EXERCISE 1C IEN 
1 a 111+( D))+ () (22)2 4+ (1g) (22) 10+ (22) 1 )2 

COREN ) (o1 (2)" + ()60 (2)"+ 
(e (3 (3)" 

¢ (20204 (%) (20019 (—2)" 4 (%) (20)18 (-2)7+ 

e ()" (37 
b 

  

9 T 
- 

A a Ty = (5)adr2r b 448 

5 a Try1= (Z)x7—rb7 b b _2 

e e (9)2 b (3)(-3)?° 

7oa (F)F2 0 (92« ()23 
d ()2 

8 TS:(S)( 2)2z8y8 9 n=09, Ty=84z? 

10 a=2 

1oa (eI =0 b (5= 
¢ 2(35)3%0 — (7)3%20 = 91854z 

12 n=6 and k= —2 

13 a 1 1 b 

121 
1331 
146 41 v 16 

1510 10 5 1 V39 

¢ The sum of the numbers in row n of Pascal’s triangle is 2. 

e i Hint: 

ii Hint: 

Let z =1, in the expansion of (1 + z)™. 

Let = —1, in the expansion of (14 z)™. 

() -e 
=0 

1hoa B+a2)"=3"+ (7)3" o+ (5)3" 22 + 
(3)3"’313 +.ot (nfl)iilz"’l +z" 

b4 

REVIEW SET 1A B 
! 

1 a8 b17£| 2 ann-1), n=>2 b n+t2 

3 a 2?4922+ 2Tz +27 

b % — 10z* + 4023 — 8022 4 80z — 32 

7 s (Deers b (P (<) 
5 a 170+ 78V3 b z® — 2% — 623 + 1422 — 11z + 3 

6 64.964808 

7 (a+b)% = ab+6a°b+15a*b 4 20a%b% + 15a2b* + 6ab° + b 

a 25— 182° + 13524 — 54023 + 121522 — 1458z + 729 

192+240+160+60+12+ 1 
T x2 3 4 x5 x6 

8 (7)2°(-3) 9 8(5)-6(5) =84 

b 64+ 

10 c=3



1M1 a2n4 (;‘)2"*%1 + (;‘)2"*%2 + (3)2"*%3 o 

“Jr( n )21zn—1 +zn 
n—1 

b 3" Hint: Let z =1 ina. 

12 a =14 

REVIEW SET 1B I 

1 

3 

9 

10 

(§)2%5% = 20000 

a 72 b 56 2 a — 

a % — 6%y + 122y? — 8y° 

b 81z + 2162 + 21622 + 96z + 16 

a 792 — 5602 

1 
318! 

5 (§)22(-1t =60 

b 8z* + 3623 + 4222 + 19z + 3 

a (20)0+ (D)@ (-1 + () 22)B (-7 + ... 

() @) (=72 + (-7 

b (30)2 + (1) 62)12(2)" + (1) 32) 1 (£)" + 

() (4 + (2" 

(—4)10 = 1048576 

a 

k= 

(3)87 =78732 b (9)33 = 2268 

11 k=180 

6 

12 =4/ 

  

ANSWERS 

  

   
    

  

     

                  

  

   

  

   

     

   

   

EXERCISE 2A W 

1 a, ¢ d, and f are quadratic functions. 

2 ay=-3 ¢ y=16 d y=-12 

EXERCISE 2B.2 

1 ay=(z—1)2+2 

  

  

d yes e no f yes 

cx=1lorb 

f no real solutions 
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2 2 .3 I ey:(z+%) 7% fy:(zfg) 7% EXERCISE 2B.3 - ‘ . 

1 a i (2 -2 il minimum turning point 

b i (-1, —4) il minimum turning point 

c i (0,4) il minimum turning point 

d i(01) il maximum turning point 

e i (-2, -15) il minimum turning point 

f i (-2 -5) il maximum turning point 

g i (7%, 771) il minimum turning point 

h i (%, 7§) il minimum turning point 

. 9 - . . . 
i1, -3 il maximum turning point 

i1 (14, —43) il minimum turning point 

2 T = b iz=-3 

(4, —-9) il (=3,1) 

z-intercepts 1, 7, z-int. —2, —4, 

y-intercept 7 y-intercept —8 

     

  

V(-3,1) 

   2 a iy=2z+1)2+3 b iy=2xz-22-5 

i (—1,3) i 5 i (2,-5) i 3      

  

I < r=3 d iz= % 
W y=2s2 440 +5 (3,9) 3 1 

. 5 7)      
iii z-intercepts 0, 6, 

y-intercept 0 

  

z-intercepts 1, 2, 

y-intercept —2 

   —1, —2 so02 (=1, —26) i (3,3) 
il z-int. —1 4+ /13, 

y-intercept —24 

  

il z-intercepts %, 1, 

y-intercept —1 

    
y=-32"+4z -1 

 



  

iz=2 h ia=1 
I (%’ 72 i (1, -9) 

L 15 
. il z-intercepts — 5, 35, 

z-intercepts %, 2, P 272 

y-intercept 2 
y-intercept —5 

iv 

  

iz=4 

i (4,1) 

iii z-intercepts 2, 6, 

y-intercept —3 

  

EXERCISE 2C IS 

1 a 

b 

A = 9 which is > 0, graph cuts z-axis twice; is concave up. 

A =12 which is > 0, graph cuts z-axis twice; is concave 

up. 

A = —12 which is < 0, graph lies entirely below the z-axis; 

is concave down, negative definite. 

A = 57 which is > 0, graph cuts z-axis twice; is concave 

up. 

A =0, graph touches z-axis; is concave up. 

A =17 which is > 0, graph cuts z-axis twice; is concave 

down. 

A =121 which is > 0, graph cuts z-axis twice; is concave 

up. 

A =25 which is > 0, graph cuts z-axis twice; is concave 

down. 

A =0, graph touches z-axis; is concave up. 

concave up e 

A =17 whichis >0 

cuts z-axis twice 

z-intercepts 

~~ 0.22 and 2.28 

y-intercept is 1 

  

A = —12 whichis < 0 

does not cut z-axis 

negative definite, since 

a<0 and A<O 

vertex is (2, —3), 

y-intercept is —7 

  

a =2 whichis >0 and A = —40 whichis <0 

positive definite. 

a=—2 whichis <0 and A = —23 whichis <0 

negative definite. 

a=1 whichis >0 and A = —15 whichis <0 

positive definite so 22 — 3z + 6 > 0 for all z. 
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d a=—1 whichis <0 and A = —8 whichis <0 

negative definite so 4z — 22 —6 < 0 for all z. 

  

il k=4 

¢ i k>-3 i k=-% 

7 a=3 whichis >0 and A = k? + 12 which is always > 0 
{as k2 >0 forall k} cannot be positive definite. 

8 k = —2, the graph touches the z-axis in this case. 

EXERCISE 2D W 

y=2(z—1)(z—2) b y=3(z—2)? 

cy=(z—1)(z—3) dy=—(z-3)(z+1) 

e y=-3(x—1)2 fy=-2x+2)(z—3) 

a b 

i k>4 
i k<—3 

2 y=3(@@—-2)(z—4) y=-31@+4)(z-2) 

cy=—3(@@+3)? 
3 ay=3z2—-18z+15 b y= 4z + 6z +4 

cy=-a22+6z—9 d y =422+ 16z + 16 

e y==222 6o+ 2 fy=—322+22+45 

4 ay=—(z—2)2+4 b y=2z-22-1 

cy=3(@@+3)2-4 dy=-2(z—-3)2+8 

e y=32(x—-4)>2-6 fy=-3@+2)2+5 

g y=-2x-2)2%+3 hy=3@+4)2+3 

i ‘7,/:2(17%)27% 

5 y=3 

EXERCISE 2 I 

  

  

  

  

  

  

  

  

  

  

1 a (1,7) and (2,8) b (4,5) and (-3, -9) 

¢ (3,0) (touching) d graphs do not meet 

2 a (0.586,5.59) and (3.41,8.41) 
b (3, —4) (touching) ¢ graphs do not meet 

d (—2.56, —18.8) and (1.56, 1.81) 
3 a (—1,1) and (2,4) b y=z+2 

cx<—1orx>2 

4 a (-2, -3) and 

(1,0) 
  

crx<—2o0r z>1 
  

  

    

  

  

  

(1. 4) b 
cxzeR z#1 

-z +3 
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6 axz=—4orl b 

¢ x<—4 or 

O<z<1 

7 ¢c=-9 8 m=0or—8 9 —lorll 

10 ac<-9 

b example: ¢= —10 

12 ac>-2 bc=-2 cc< -2 

13 Hint: A straight line through (0, 3) will have an equation of 

the form y = ma + 3. 

14 b=8, c=—14 

EXERCISE 2F I 

1 7and —5 or —7and 5 250r% 3 14 

4 18 and 20 or —18 and —20 

5 15and 17 or —15and —17 6 15 sides 7 ~3.48 cm 

8 b 6cmby6cmby7cm 

10 no 12 ~61.8 kmh™! 

14 a y=-%22+438 

b No, as the tunnel is only 4.44 m high when it is the same 

width as the truck. 

15 a h=-5(t—2)2+80 

EXERCISE 2G MM 

9 ~ 11.2 cm square 

13 32 elderly citizens 

b 75m ¢ 6 seconds 

  

  

        

1 a min. —1, when =z =1 b max. 8, when = = —1 

1 _1 . 1 _ 1 
¢ max. 83, when z = 3 d min. 71§, when z = -7 

e min. 4%’ when z = % f max. 6%, when z = % 

2 a 40 refrigerators b €4000 

4 500 m by 250 m 5 ¢ 100 m by 112.5 m 

6 a412mby4lZm b 50 m by 314 m 

7 a50m b 30m 8 b 3% units 

9 ayzfi—%x b 3cmby4cm 

EXERCISE 2H.1 NS 

1 a b - + ~ + - L 
-1 3 0 2 

< d 
- + - + + v 

—4 1 1 
2 

e f 
- - + L= - > 

-2 

2 a b 
1l - LF o, <t — R 
—4 2 -1 5 

< d 
1l -1+ o, -« - * e 
0 3 -2 0 

  

    

  

    

      

  
  

  

    

¢ + + ! + 1l - LT oy «— L T L= 5y 
_% 4 -1 3 

g h 

«— 1 T 1= 5 1+ > — T «—Ll T 1= 5 - + L T 
— 2 i 3 

i 
+ - + 

xT 
1 5 
2 

a b 
+ 2 + z + L + z 

< d 
-— —> -« T e 

4 -1 

e f 
- — — T -— — — T 

3 

a b 
L= L L Ll 1= o 

-3 3 -2 2 

< d 
Ll T 1= 5, - — T e 
0 5 1 2 

e f 
- Tl - — * e 

_1 1 _2 1 
2 2 3 2 

g h 
- Tl - + ——> 

-3 1 -1 5 
3 2 

i - + _ . 

—2 1 
5 3 

a b 
+ _ + r + 1 + z 

—J 

< d 
-— —> -« T e 

2 1 
2 

e f _ _ -1 - . 

3 

EXERCISE 2H.2 B 

1 a -5<z<2 

  

b -3<z<2 ¢ no solutions 

dal zeR e —i<z<3 f-2<az<4 

az<Oorz>1 b -2<2<0 ca#-2 

d 5<z<3 ez<-2o0r z>6 f4<z<l1 

azx<0orz=>3 b 2<z<2 

cax< V2 or z>2 d —3<az<7 
e x<5 orxz>6 foe<—6o0raxz>7 

g x<—1 or x}% h no solutions 

i —$<a<i jz<—% orz>4 

ozl Il $<a< s} 

mao<-—%orz>1 nz<—%orz>2 

ox<%orm>3 

a i k<—-8or k>0 i k=-8or0 

—8<k<0 

b i —-1<k<l k#0 il k=—1lorl 

il k<—-1or k>1



i k<—6 or k>2 

    

i k=—6 or k=2 

—6<k<2 

a i k<—-2o0r k>6 i k=—-2or k=6 

—2<k<6 

b i k<—32 or k>3 i k=-2 or k=3 

~B<k<3 

€ i —2<k<0, k#-1 i k=—% or k=0 

il k<—% or k>0 

am>3 bm<-1 

am<-—-1o m>T7 bm=-1orm=7 

¢ —1<m<7 

REVIEW SET 2A B 

0
 

©
 

O
 

T
 

W
 

P
 

12 

14 

15 

17 

18 

a y:3:r/2724z+48 

maximum = 5 when z =1 

(4,4) and (—3,18) 

_9 9 am=g b m<g 

  

b 

5 k< -3% 
9 6 o 5 cm>g 7 gorg 

Hint: Let the line have equation y = ma + 10. 

ay=20a+35)°-3 b 

  

13 k<1 1 
2 

a I A>0 iila<o0 

b i A(-m,0), B(—n,0) i z= 

y = —4x? + 4z + 24 

2l m 

—m—n 

2 

16 m = —5or 19 

    

19 

20 

< 

a 

< 
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r<—2 or x>3 b —-1<z<5 

x<7% or x>2 

k<6-2V5 or k>6+2V5 b k=6+2V5 
6—-2V5<k<6+2V5 

REVIEW SET 2B IS 

14 

=2 d 

  

—_ 4 4 1 e=3% V(§.12)) 

a 

b 

A = 65, the graph b A =97, the graph 

cuts the z-axis twice cuts the z-axis twice 

S T 
a <0, A>0, neither 

a >0, A <0, positive definite 

y=—6(z—2)2+25 

a 

b 

z=-1 d 

(~1.-3) 
aeint, 1+ 8 
y-intercept —1 

  

=—2(@@+5)(z—-1) b (-2,3%), z=-2 

c>—6 

example: ¢= —2, (—1, —5) and (3, 7) 

minimum = 5% when z = — 

o
 

@
l
 

maximum = 5% when z = — 

— 2 1 3 y=32% -3z — 18 b —18 ¢ (3, -183) 
m=-2 n=4 b k=7 

~ 13.5 cm square 
  

z=—4or0 b 

< —4 or x>0 
    o -5z 
  

  

  

  

                  

a >0 {graph opens upwards} 

b 
b<0 {z= % > 0 is z-coordinate of vertex} 

a 
¢ <0 {y-intercept is negative} 

A >0 {two z-intercepts .. two real roots}
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15 

TV(2,-18) 

16 a k==+12 b (0,4) 
1 1 2 17 b 373 mby 333 m ¢ 1250 m 

18 a + _ + . b _ _ . 

-2 5 -3 

19 a0<x<% bz<-—1 0rm2% 

1 3 
czgg or z>5 

20 a—2—25<m<%,m7£0 bm:—2—25 orm:% 

¢m<722—5 or m>% 

EXERCISE 3A NS 

1 a 

b 

2 a 

d 

Is a function, since for any value of z there is at most one 

value of y. 

Is a function, since for any value of @ there is at most one 

value of y. 

Is not a function. If &2+ 4% =9, then y = +v9 — z2. 

So, for example, for ¢ =2, y = +/5. 

function b function ¢ function 

not a function e not a function f function 

function h not a function 

3 No, because a vertical line (the y-axis) would cut the relation 

more than once. 

4 No. A vertical line is not a function. It will not pass the “vertical 

line” test. 

5 Not a function as a 2 year old child could pay $0 or $20. 

6 a 

b 

y2 =z is a relation but not a function. 
y = 2 is a function (and a relation). 

y? = has a horizontal axis of symmetry (the z-axis). 

y = 22 has a vertical axis of symmetry (the y-axis). 

Both y? =z and y =z have vertex (0, 0). 

y? = is a rotation of y = x? clockwise through 90° 

about the origin or y? = z is a reflection of y = 2 in 

the line y = =. 

i The part of 2 =z in the first quadrant. 

ii y=+/z isa function as any vertical line cuts the graph 

at most once. 

    

7 a Both curves are functions since any vertical line will cut each 

curve at most once. 

by=Yz 

EXERCISE 3B 

1 a2 b 8 ¢ -1 d —13 e 1 

2 a2 b 2 ¢ —16 d—68 e if 

3 a-3 b3 ¢ 3 d -3 e L& 
4 a i1 i -1 baz=-4 

5 a i -% ii-3 i -4 baz=4 cz=2 

6 a7—3a b 7+3a ¢ —3a—2 d 7—6a 

e 1—3zx f 7—3x—3h 

7 a 222+4+19z+43 b 222 — 11z +13 

¢ 222 -3z—1 d 2z% +32% -1 
e 1822 + 9z — 1 f 222 + (4h + 3)z + 2h% +3h — 1 

22 
8 a 9z2 b T ¢ 322 d 222 — 4z 47 

9 a 71 b 2 . 2+ 3z d 2z +1 

x x T z—1 

10 f is the function which converts z into f(z) whereas f(z) is the 
value of the function at any value of . 

12 

13 

14 

15 

17 

Note: 

Y. 

(2,1) 

flz) = —2z+5 

a P(3) = 35. 
3 minutes. 

Other answers are possible. 

(5,3) 

There are 35 L of petrol in the tank after 

b t =45 After 4% minutes there are 50 L of petrol in the 

tank. 

¢ 5L 

a H(30) =800. After 30 minutes the balloon is 800 m high. 

b t =20 or 70. After 20 minutes and after 70 minutes the 
balloon is 600 m high. 

c 0<t<80 

a=3, b=-2 

a V(4) = 
pounds after 4 years. 

d 0mto 900 m 

16 a=3, b=-1, c=—4 

5400; V(4) is the value of the photocopier in 

b t=6. After 6 years the value of the photocopier is £3600. 

¢ £9000 d 0<t<10 

EXERCISE 3C I 
  

a IUAUe erit points (y) 
  

  ~—> 
  

  *—— 
  

  o T—o 
  

  f 
  

        mount             ver spee 
0 150 

    limit 
  

0 10 20 30 40   b Domain is {z 

50 

(zkmh™1) 

z >0}, Rangeis {2,3,5,7,9}



o
 

- 
T 
-
0
 

0
n
 
0
o
 

At any moment in time there can be only one temperature, so 

the graph is a function. 

Domainis {t |0 < ¢ < 30}, Rangeis {7"| 15 < T < 25} 

Domainis {z |z > —1}, Rangeis {y|y < 3} 

Domainis {z | -1 <z <5}, Rangeis {y|1<y<3} 

Domainis {z |z # 2}, Rangeis {y|y # —1} 

Domainis {z |z € R}, Rangeis {y|0<y<2} 

Domainis {z |z € R}, Rangeis {y|y > —1} 

Domainis {z |z € R}, Rangeis {y|y < 275} 

Domain is {x |z > —4}, Rangeis {y|y > —3} 

Domainis {z |z € R}, Rangeis {y|y > —2} 

Domain is {z | z # +2}, 

Rangeis {y |y < —1 or y >0} 

true b false ¢ true d true 

{yly >0} b {yly<0} ¢ {yly>2} 
{yly<0} e {yly<1} f{yly=>3} 

wly>-41 b {yly<9} i{yly< 2} 

  

-
0
 

0
 

n 
C
o
 

      
  

Domain is {x | > —6}, Rangeis {y|y > 0} 

Domain is {x | © # 0}, Rangeis {y|y > 0} 

Domainis {z |z # —1}, Rangeis {y |y # 0} 

Domain is {z |z >0}, Rangeis {y|y <0} 

Domain is {z |z # 3}, Rangeis {y |y # 0} 

Domainis {z |z < 4}, Rangeis {y|y >0} 

b 

(1,-8) 

fla) = a® —32% -9z + 10 fz) =2 +42° — 162 + 3 

Domain is {z | z € R}, Domain is {xz | = € R}, 

Rangeis {y|y € R} Rangeis {y |y > —8} 

Y d Y 

2 

< = < > 
T —92 2 T 

flz)=va?+4 flz)=va?—4 

Domain is {z | z € R}, Domain is {z |z < —2 
Range is {y |y > 2} or x> 2}, 

Range is {y |y > 0} 
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e 

Domain is 

{z|-3<z<3}, Domain is {z | = # 2}, 

Rangeis {y|0<y <3} Range is {y |y # 1} 

S 

Domain is {x | ¢ # —1 or 2}, 

Range is {y|y< i or y> 3} 
h Y 

Ty =o+d 

Domain is {z | z # 0}, 

Rangeis {y|y< —2 or y=>2} 

i i 

flo) =%+ 5 5 1 )=+ o @)=+ 
Domain i 0}, L 
omain s (o] 70} Domain is {z |  # 0}, Range is {y | y > 2} ; 

Rangeis {y |y < —2 

or y>2} 

k y 1 Yy 
(1.44,0.531) 

y=x2"" 

  

Domainis {z |z € R}, 

Range is {y |y > 0} 

Domain is {z | z € R}, 

Range is {y |y < 0.531}
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9 a (2.53,28.0) 

    

  

y=-at+22°+ 522 +a+2 

    

     

(4,-42) 

Range is {y | —42 <y < 28.0} 

Yy b (1.17,6.27) 
(—1.06,4.03) 
   

  

(~0.101,1.95) 

  

   (2.-8) 
(=2,-12) y=—22"+522+2+2 

Rangeis {y|—-12<y<6.27} 

  

Range is {y\%<y<1} 

  EXERCISE 3D.1 

1 a 
  

  

  

    

  

  

  

  

  

  

                          

  

  

b i As k becomes larger the graphs move further from the 

origin. 

i quadrants 1 and 3 i iy 
-— 0 T 

2 a 
  

  

  

  

  

  

  

  

  

                              

b i As|k|becomes larger, the graphs move further from the 

origin. 

il quadrants 2 and 4 iii + i - 
- = 0 €T 

3 a{z|z#0} b {y|y#0} cx=0 dy=0 

6 15 36 
4 ay=-— by=— cy=—— 

z x x 

EXERCISE 3D.2 NS 

1 a i vertical asymptote « = 2, horizontal asymptote y = 0 

il Domainis {x |z # 2}, Rangeis {y |y # 0} 

iii no @-intercept, y-intercept 7% 

iva z—27, f(z) > —o0 

as ¢ — 27, f(z) - co 

as z — —oo, f(z) — 0" 

as « — oo, f(z) — 0T 

  

vertical asymptote = = 3, horizontal asymptote y = 2 

Domain is {z | z # 3}, Rangeis {y |y # 2} 

z-intercept 2, y-intercept % 

  

ivas z—3, f(z) > —o0 

as = — 3T, f(z) — o0 

as ¢ — —oo, f(z) — 27 

as @ — oo, f(z)— 2" 

  

vertical asymptote = = —1, horizontal asymptote y = 2 

Domainis {z |z # —1}, Rangeis {y |y # 2} 

z-intercept %, y-intercept —1 

  

iva z— —17, f(z) — oo 

as © — —17, f(z) — —o0 

as ¢ — —oo, f(z) — 27T 

as © — oo, f(x)—27 

 



  

b 
PR s S LT .y 

1 2 -2 

- + - z 

1 3 

. b : 
f- i tl- 

-2 1 -3 0 

—" - + . d + i - + . 
T T 

-5 -1 -1 2 

f : 
— 1l =y -l 

-3 4 1 2 
2 4 

: h 
t - P t - 

0 2 0 3 

i vertical asymptote is =z =1 

ii 

  

z-intercept 0, y-intercept 0 

1 
fl@z) =1+ 1 horizontal asymptote is y =1 z— 

  

vertical asymptote is = = 2 

z-intercept —3, y-intercept 7% 

  

5 
flz)y=1+ 2 horizontal asymptote is y = 1 

T — 

  

as 

as 

z— 27, f(z) > —c0 

z— 2%, f(z) - 0 
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vertical asymptote is z = —2 

z-intercept %, y-intercept 7% 

7 . . 
f(z) =3 — ——, horizontal asymptote is y = 3 

T +2 

  

vertical asymptote is = = 3 

z-intercept —%, y-intercept % 

7 
flz)=—-2— =3 horizontal asymptote is y = —2 

x 

  

vertical asymptote is = = 3 

z-intercept —2, y-intercept % 

10 
flz) = -2+ = horizontal asymptote is y = —2 

T 
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vi 1 
9 a (fog)le)= — 

r—3 

Domain is {z |z # 3}, Rangeis {y |y # 0} 

1 b - (Foa)@) =~y 
Domainis {z |z # —1, = # —2} 

Rangeis {y|y >4, y<O0} 

10 a Let =0, .. b=d andso 

f 1 vertical asymptote is z:% ar+b=cx+b 

i z-intercept —3, y-intercept —3 oooax=cz forallx 

1 7 . . . Let z=1, . a=c¢ 
i f(z) =35+ ™z horizontal asymptote is y = 5 b (fog)a)=[2alz+ 2643 = la+0 foralla 

iv : oo 2a=1 and 2b+3=0 
+ - i+ 

" ¢ Yes, {(g0f)(@) = [2ala + [3a+ b} 
11 a (fog)(z)=V1—2a2 

vas z— %7, f(z) — —o0 b Domainis {z|—-1<az <1}, Rangeis {y|0<y<1} 

as z— 1%, f2) — o0 12 a RyND; # o 
as @ — —o0, f(z)— %— b Domainis {z |z € Dy, g(z) € Dy} 

as = — oo, f(z)— %+ EXERCISE 3F I 

vi : 1 a i . 

. d 
5 a Domainis {z|z# ——} 

c 

b vertical asymptote is z = —— 2 a 
c 

¢ z-intercept is ——, y-intercept is — 
a d 

b Z(cx+d) -4 
d az+ :g and so on 

cr+d cx+d 

_ ad 
As T — oo, < 0. 

cx+d 

the horizontal asymptote is y = L 
c < 

EXERCISE 3E NN 

1 as-2z b —2z-2 ¢ 11 d —2 

2 a —2-222 b 1+4z?2 ¢ -10 d —4 

3 a —42®—16c—13 b 10-222 ¢ 14 - 

4 a 25x—42 b VB ¢ =7 d 2 
Lo oo o i 

5 a ixz*—-6z+10 il 2—x bz—ifl 

6 a (fog)(z)=9—Vz2+4 3 f: o 

Domain is {z |z € R}, Rangeis {y |y <7} Domain 1.s {r] —2<2<0} 
b 53 Rangeis {y|0<y <5} 

¢ (foP@) =9-/0— & o 
Domainis {z |0 < z <81}, Rangeis {y|6<y<9} Domainis {z |0 <z <5} 

a —6r—9 baxz=-1 Rangeis {y| -2 <y <0} 

  
a i 1-9z2 i 1+ 6z — 322 b z=-— 

o
l



6 

7 

  
fisy=3—-z . f! is x= 

f: 

Domain is 

Range is 

s 
Domain is 

Range is 

Domain is 

Range is 

L 

Domain is 

Range is 

f: 

Domain is 

Range is 

fh 
Domain is 

Range is 

Domain is 

Range is 

L 

Domain is 

Range is 

Domain is 

Range is 

f—lA 

Domain is 

Range is   
=
)
 

-
 

< 
8 

V
o
A
 

O
 

-
 

o
 

< 
8 

N 
WV 

z € R} 

y € R} 

z € R} 

y €R} 

z € R} 

y >0} 

z >0} 

y ER} 

z € R} 

y €R} 

z € R} 

y € R} 

z € R} 

y €R} 

z € R} 

y € R} 

f(z) = f~1(z) and the function is its own inverse. 

a {(21),(4,2). 5 3)} 

d {(-1,-1),(0,0), (1, 
Rangeis {y|—-2<y<3} 8 

1 
fisy=—, z#0 

T 

f=ft 
f is self-inverse. 

b inverse does not exist 

¢ {(1,2), (0, -1),(2,0), (3, )} 
1} 
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10 a The inverse function must also be a function and must 

therefore satisfy the vertical line test, which it can only do if 
the original function satisfies the horizontal line test. 

b i is the only one. 

11 f : x +— x> —4 is many-to-onc so it does not satisfy the 

horizontal line test. .'. it does not have an inverse. 

12 a f~Yz)=—-vZ b    
13 

14 

15 

  

    

3z —8 i 
y= is symmetrical about y = x 

z — 

f is a self-inverse function. 

3z —8 3z —8 
b i) = = and f(a) = 2% 

z—-3 z—3 

f=f"1 - fisasclf-inverse function 

16 a gis (f(z), z) 

EXERCISE 3G 

1 

   



544  ANSWERS 

  

  

  

  

il Rangeis {y|y>—4} 

ii Rangeis {y|y=2} 

< 5} i yes, it is a function 

5 

4 a=—6, b=13 

  

3 

4 

REVIEW SET 3A 

1 a i Domainis {z|zec R} 

iii yes, it is a function 

b i Domainis {z |z e R} 

iii yes, it is a function 

¢ i Domainis {z |z € R} 

i Rangeis {y|y<—1 or y>1} 

no, not a function 

d i Domainis {z|z¢€ R} 

il Rangeis {y|-5<y 

2 ao b —15 < 

3 a i2 iio bz=-1 

5 a 10 -6z brz=2 

6 Domainis {t|0<t< 140}, 

Range is {N |70 < N < 110} 

7 axz=0 b 

¢ Domainis {z |z #0} 

Range is {y |y < 0} 

  

  

  

  

  

  

  

                        

a f(-3)=(-3)%=9, g(-4)=1-6(-4)=9 
bz=-4 

9 a Domainis {x|x > —4}, Rangeis {y|y > 0} 
b Domainis {z |z € R}, Rangeis {y|y <1} 

¢ Domainis {z |z € R}, Rangeis {y|y> 7%} 

    

20 60 
10 ay=—-—— b y=— 

x T 

1 

12 a vertical asymptote @ = 2, horizontal asymptote y = —4 

b Domainis {z |z # 2}, Rangeis {y|y# —4} 

< ' 
_ + i 

«— Lt i 5y 
_1 2 

4 

as z — 27, f(z) — oo as & — —oo, f(z) — —4T 

as  — 27, f(z) —» —c0 as z — oo, f(z) — —4~ 

d z-intercept 7%, y-intercept% 

e 

13 222 +1 b 4da? —12z+11 ¢ -1 
14 6z — 3 baz=1 

1-2yZ2 b Vi-2¢ ¢      

  

  

  

20 (2.9) 
  

  

  

  

  

  

(1, —3) 
  

  W 

                           



b Rangeis {y|0<y<2} 

¢ iz=v3 

21 a 

i z=— 

o
l
 

     
  

    

  

y= is symmetrical about y = x z — 

f is a self-inverse function. 

5z —1 5z —1 b i) =2 and  f(z) = 2= 
— r—5 

f=f1 f is a self-inverse function. 

22 a —4 b1     
y:‘—m2—2a:+3 

  
REVIEW SET 3B B 

1 a Domainis {z |z € R}, Rangeis {y|y> —4} 

b Domainis {z |z > —2}, Rangeis {y|1<y <3} 

¢ Domainis {z|x € R}, Rangeis {y|y=—1,1,or2} 

22—z —2 b 1622 — 12z 

i Domainis {z |z € R}, Rangeis {y|y=> —5} 

i z-intercepts —1 and 5, y-intercept 72—95 

is a function 

b i Domainis {z |z € R}, Rangeis {y|y=1or -3} 

no x-intercepts, y-intercept 1 

is a function 

    

4 a is a function b is not a function 

  

a i-4 Wi -3 i 2 b z=-2 
3z — 

¢ = 4 dz=-9 
x+1 

6 al2 b=+l 

7 a Domainis {x |z # %}, Range is {y |y # 10} 

b Domainis {z |z > —7}, Rangeis {y|y=> 0} 
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b It is a function. 

¢ Domainis {z |z <9}, Rangeis {y|y > 0} 

9 a=1b=-6, c=5 

10 

   (4,4) 

(0.131, 0.0646)    

   

y=2° -4z +z 

(=1.-6) (2.54, —6.88) 

Rangeis {y | —6.88 < y < 4} 

11 a : b : - S S 
5 4 -1 3 3 

12 a vertical asymptote is = = —2, 

horizontal asymptote is y = —1 

b Domainis {z |z # —2}, Rangeis {y|y# —1} 

¢ x-intercept is 1, y-intercept is % 

dasz— -2, f(z) > —oc0 as z — —oo, f(z) — —1~ 

as @ — —27, f(z) — oo as ¢ — oo, f(z)— -1 

  

  

13 a —4z? +4a+2 b 5— 222 c 2 

1 

(22 — 4z + 3)2 

Domainis {x |z # 3, ® # 1}, Rangeis {y|y > 0} 

14 (fog)(e) = 

i 622 —3z+5 i 1822 + 57z + 45 

—_35 
rT=11 

16 
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19 (7 oh @) = (ho f)M(@) = T 

20 a (gof)@) = — b L o f)(z) = z=—1 
g 3zx4+1 2 

¢ i vertical asymptote x = —%, 

horizontal asymptote y = 0 

  

1 iii Rangeis {y|y<—7 or y \4
 

i
 

—
 

21 16 

22 aa=2 b=-1 
b Domainis {z |z # 2}, Rangeis {y|y# —1} 

3z b 2z + 1 

T —2 z—1 
    

  

1 a b 

  

  

  

  
  

  

  

  

  

  

                                          

  

  

  

  

  

  

  

                                  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                                                    4 
Y 
  

a g(z)=flz—4) 

a g(z)=2z-1 

¢ g(z)=—2%+5x—4 
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7 a b AY 

.y:fx) \Myffiir I 

LT :é. S| b N 

Y 

° 2 a AY 

y=h@) |, 
:—.1| = 

kY 
< Y 

b Ay 

23 X i 

ARG 
2 . 

» 
d vy =h(z) 

8 (1, —9) 

9 a y-interceptis —1 b z-intercepts are —2 and 5 

¢ inconclusive 

10 g(z) =22 — 8z + 17 

1M1 a i(32) i (0,11) iii (5, 6) 

b i (-24) i (=5, 25) i (-13,2 ) Bl 

EXERCISE 4B B 
  

  

  

  

  

  

  

  

                              

1 a y 

=2f(x) 

... . Y 

- = > 
-3 y=f(x) T 

v 
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13 Y y = a2 is transformed 

y=2’ to y=2x—3)2+1 
by vertically stretching 

=2 . with scale factor 2 and 

- then translating through 
3 

=26 - DR 1] ! 

7 I % 

14 AY y = a2 is transformed 

° to y=2(x+1)2-3 
=z by vertically stretching 

)= 222 with scale factor 2 and 

then translating through 

T = ( -1 ) 
y=2(z+13-3 =3 

(-L,-3) y 

15 a Horizontally stretching with scale factor %, then vertically 

stretching with scale factor 3. 

. b i (2, -15) i (3.6) i (—1,3) 

¢ (43 i (-6, 2 i (—14,1) 

1 3 1 
16 a y=— b y=-— cy= 

Y 2z Y T Y T +3 

1 4 1 dy—di o T + 

x x 

3 — 4 17 a gla)= —— —1= %+ 
r—1 z—1 

b vertical asymptote = = 1, horizontal asymptote y = —1 

¢ Domain is d 

{o]o#1} 
Range is 

{yly# -1}   
9 a (2,25) b (—25, —15) 

10 a g(z) =22%+4 b glz)=5-= 
:g(x):%:c3+2x2—% d g(z) =822 +22 -3 

1 vA y =a? is transformed EXERCISE 4C B 
to y=3(x+1)%2-2 1 b 
by vertically stretching 

with scale factor 3 and 

then translating through 

(=) 

  

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

                                          

y =2 is transformed 

to y:%(z+l)2+3 2 a 

by vertically stretching 

  

  

  

  

  

with scale factor % and 

then translating through 

(5) 

  

  

  

      
                            



6 g(z) =a* + 22% — 322 — 

7 a 

b 

   

   
   

  

   
   

  

  

  

i (3.0 
i (7 1) 

        
i (-3, -2) 
i (-3.2) 

9 

a 

b 

(-2, -1) i (0.3) 
i (=5, —4) i (0,3) 
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i (1,2) 
i (—2,3) 

a A reflection in the y-axis and a reflection in the z-axis. 

b (-3,7) c (5,1) 

a A reflection in the z-axis. 

b A vertical stretch with scale factor 3. 

<   

  

  

  

  

  

  

  

  

  

      

  

                          

a A reflection in the y-axis. 

b A horizontal stretch with scale factor 2. 

<   

  

  

=Y
 

  

  

    

  

  
              

  

   r—1)% —           

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

  

                              

y = x? is transformed 

to y=—(z+2)2+3 
by reflecting in the 

x-axis and then 
translating through 

(%) 

1 . 
y = — is transformed 

T 

  to y=— +2 
r—3 

by reflecting in the 

x-axis and then 

translating through 

(2) 

EXERCISE 4D B 
  

  

  

  

  

  

    
  

                    

x-intercepts are £1, 
y-intercept is —1
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y = f(x) has been 
translated 3 units 

upwards. 

  

  

  

  

  

  

  

  

i y = f(z) has been 
translated 1 unit to 

the right. 

  

  

  

  

  

  

  

  

  

iii y = f(x) has been 

vertically stretched 

with scale factor 2. 

  

  

  

  

  

  

  

  

  

  

iv » AV 4 y = f(z) has been 
3 v reflected in the 

z-axis. 
  

  

  

  

  

2 
sy
 

                        

  

  

2 a 1 A vertical stretch with scale factor 3. 

il g(x) =3f(x) 
b i A vertical translation through ( 32 ) 

it g(z) = f(z) -2 
¢ 1 A vertical stretch with scale factor % 

i g(z) = $/f(2) 
d i A reflection in the y-axis. it g() = f(~a) 

- y=f(2) 
- y=2f(x) 
< y=1f(x) 
> y=f(z+2) 

<-»y=f(22) 
- y=[(32) 

- y=g(z) 
- y=g(z)+2    

   

  

6 a x-intercepts 

are —1 and 3, 

y-intercept 

is —f 

7 a f(—z—4)—1 
¢ Lf@+2)+3 

b f(-z+4)—1 

d $f(@+2)+1 
Lo . . —1 

8 a Areflection in the z-axis, then a translation through ( 3 ) 

b A horizontal stretch with scale factor 2, then a translation 

through ( _07 ) 

¢ A horizontal stretch with scale factor %, then a translation 

1 
through ( 0 ) 

d A vertical stretch with scale factor 2, a horizontal stretch with 

scale factor 4, then a translation through ( 741 ) 

e A vertical stretch with scale factor 2, a horizontal stretch with 

. 1 
scale factor %, then a translation through ( 5 ) 

f A reflection in the x-axis, a vertical stretch with scale factor 

4, a horizontal stretch with scale factor 2, then a translation 

through ( :? ) 

9 a The vertical stretch has scale factor | a |. The reflection in the 

x-axis occurs if a < 0. Each point is then moved A units 

right and k units up. 

b The function has shape \/ if a >0 and /\ if 
a<0. 

The function has vertex (h, k), and y-intercept ah? + k. 

REVIEW SET 4A   

y=f(x) 
y=f(-z) 
y=—f(z) 
y=flz+2) 
y=f(z)+2  



3 b g(z) = 522 + 30 

d g(z):%z2f ,§Z+4 

-« y=f(z)=2+1 

- y=—f(2) 
<--» y=f(2x) 

<--» y=f(z)+3 

  

5 g(z) is the result of transforming f(z) 3 units to the left and 
4 units down. 

domain of g(z) is {z | =5 <z <0} 

range of g(z) is {y | —5 <y < 3} 

6 agx)=(x—-1)2+8 

boi{yly=4}t i {yly>8} 
7 g(z) =3z +5z+9 

8 i y=3z+38 il y=3z+8 

flx+k)=a(z+k)+b=azx+b+ak= f(z)+ak 

9 a —fz+2)+3 b 2f(z—4) -2 

z-intercepts —5 and 1, y-intercept —9 

x-intercepts —10 and 2, y-intercept —3 

a 

b 

a 

10 a z-intercepts —9 and —3 

b 

< 

d z-intercepts —5 and 1, y-intercept 3 

  

  

  

  

  

  

  

  

  

      

  

                    

  

  

  

  

  

    
  

  

  

2z — 3 
11 a g(z)= L d 

r—1 

b vertical asymptote 

=1, 

horizontal asymptote 

y=2 
¢ Domainis {z |z # 1} 

Range is {y |y # 2} 

12 y=2AY y= 22 is transformed 

to y=3(z-22%-1 

by vertically stretching 

i with scale factor % and 

then translating through 

(%) < > —1 

y =                   

REVIEW SET 4B 

1 a   
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b (2, —4) and 

(4,0)
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9 3 1 

      

g 1+5(2°7) h 5241 iz 4z +1 
3 1 

i 322 45(3%)4+1 k 222 —z2+4+5 | 23 _3(227)_1 

3 a 2% yoetl_3 b 32® +7(3%) + 10 

¢ 52 —6(5%) + 8 d 22% 4+ 6(2%)+9 

e 32% —2(37) +1 f 427 +14(4%) + 49 
1 4 

gz—4 h4"—9 iz-= |jaPtd+— 
10 (1, 6) T z 

2 —2 - 2 
11 a A vertical stretch with scale factor 2, then a translation k7 —2 4775 125 —10(277) + 272 

— (BT o n 2n through ( 31)‘ 4 a 5°(5% 41) b 10(3") ¢ 77(1 4 727) 

d 5(5" —1) e 6(67F1 —1) f 16(4” — 1) 
b A horizontal stretch with scale factor %, a reflection in the g 27(2" —8) h 5(271—1) i 9(22n—1) 

T T T T 

x-axis, then a translation through ( 0 ) 5 a @+ 2) b (27 +5)(2 5) 
—6 ¢ (4+3%)(4—37) d (54 27)(5 —2%) 

¢ A reflection in the y-axis, a vertical stretch with scale e (3% 4 27)(3% — 27) P o(2® +3)2 

factor %.thenatranslation through (g) g (3% +5)2 h (2% —7)2 i (5% —2)2 

12 6 a (2T+1)(2®-2) b (37 4+3)(3* -2) 

? ¢ (27 —3)(27 —4) d (2% +3)(2 + 6) 
e (2% +4)(2* - 5) f (3% +2)(3*+7) 

g (3°+5)(3* —1) h (5% 4+2)(5% — 1) 
i (7% —4)(7* —3) 

1 
7 a2 b 10¢ ¢ 3° d — e 5% 

571 

f (3 s @B hs i5n 
8 a3m+1 b 1+6™ c4n42n d 47 -1 

e 6" f 5" g4 hon—1 i 
9 a montl b _3n—1 

b A reflection in the z-axis, a vertical stretch with scale EXERCISE 5¢ W 

factor %,thenatranslation through (7;) 1 az=5 b z=2 cz=4 daz=0 
- e r=—1 fz:% g z=-3 h z=2 

. _ —4xz -5 A . K I 
y= Y P z=-3 fz=-4 =2 z=1 

i : 2 az= r=-3 cg=—2 dz=-1 Domainis {z |z # —1}, Rangeis {y|y# —2} 2 2 2 
5 3 5 

e r= r=—-3 =3 hax=2 
EXERCISE 5A I N 2 2 

1 _1 3 5 1 iz= z:% k z=-4 Il z=-4 

1 a2° b2° ¢ 2° d 22 e 2 ® 
4 3 3 -4 -3 m = x:% o xr=-2 pz=-6 

f2 s 2 h2 2 P2 a x= has no solutions cx:% 
1 1 1 3 _5 

2 a3’ b33 ¢ 3% d 32 e 3 ? 4 az= z=2 czx=-1 dz=2 
1 3 4 5 2 e x= T=-2 
3 4 5 3 7 

PaT b e d2 e T 5 az=lor2 ba=1 cz=1lor2 
£ a3 % h2?® i2? iTT dz=1 e =2 fa=0 

a ot b o? co? 4Lt e o 2 EXERCISE 5D I 
5 a ~298 b ~ 0.435 ¢ ~1.68 d ~1.93 1 a i=x14 i~ 1.7 i 2.8 v =204 

e ~0.523 b izx16 i z~-07 

3, 1 3 < = 27 has a horizontal asymptote of y = 0. 6 a 5 b = c 93 dmym e 2z y ymp! y 
2 acC b B < E d A e D 

7 a8 b 32 c 8 d 125 e 4 3 b 

1 1 1 1 1 
f3 3 h 15 I s I3 

EXERCISE 5B 

1 al bz ¢ 2% or \Z 

2 az+22%+22 b 220420 cz+1 

  
d 72 4 2(7%) e 2(3%) -1 f 22 +22+3



ANSWERS 553 

  

b 

5 ay=0 by=-1 cy=3 dy=2 

e y=0 fy=-4 

. - 17 _ 48 — 6 a i -1 W7 i -4 =-1g3 b y=-2 

d Domainis {z|z € R} 

Rangeis {y |y > —2} 

7 iii 16 b y=4 

d Domainis {z |z € R} 

Rangeis {y |y > 4} 

8 by=1 

d Domainis {z |z € R} 

Rangeis {y |y <1}     

il Domainis {z |z € R} 

Rangeis {y |y > 1} 

iy~ 3.67 

iv as ¢ — o0, y — 00 

as  — —oo0, y — 11 

      

vy=1 

b ii Domainis {z |z € R} 

Range is {y |y <2} 

iii y~ —0.665 

iv as z— o0, y — —00 

as r — —oo, Yy — 27 

vy=2 

< ii Domain is {z | z € R} 

Range is {y |y > 3} 

il y~3.38 

v as x — o0, y— 3t 
as T — —o00, Y — 00 

vy=3 

d ii Domainis {z |z € R} 

Range is {y |y < 3} 

iy~ 2.62 

iv as ¢ —o00, y—3" vy=3 
as © — —00, Yy — —00 

10 aa=5 b=-10 b y =310 

11 a (0,25) b a=15 ¢ y=35 

12 a x~ 346 bz~ 246 ¢ x~1.16 

d z~ —0.738 e x~1.85 f z ~0.0959 

9 = ~6.03 h z ~ 50.0 i z~31.0 

EXERCISE 5E.1 NS 

1 a 100 grams < AW 

b i x~13lg 

  

(grams (24)507) 
  

  4001 ey = 100 x (L.07)! 
  

  

200   

                                

(10,197) 
(4,131) 1 (hours) 

O 10 0 T 

2 a Py=50 

b i & 76 possums il &~ 141 possums 

iii & 396 possums
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< 

400 (10, 396) 

200 

o , 76) n( earsl 

0 10 

d = 11 years e = 11.1 years 

3 a B = 12 bears b = 138 bears 

¢ ~239% d =~ 23.0 years 

4 a 4 people b 393 people ¢ &~ 19.9 days 

5 a iV ii 2Vp b 100% 
¢ ~ 183% increase, it is the percentage increase in reaction 

speed from 20°C to 50°C. 

6 a A(t)=5000x (1.1)! b i £6050 ii £8052.55 

< A(E) d = 4.93 years 

10000 A(t) = 5000 x 
  

  

  

  
5000                   t (years) 

0 2 4 6 
  

EXERCISE 5E.2 

  

  

    

     

  

  

  

                        

  

  

  

    
              

  

1 a250¢g b i x~112¢g ii ~504¢g i 

< W (grams) 
250 

2001 N 3() = 250 x (0.998) 
150 

100 

50 - 122.6) 
0 

0 1000t (years) 

d = 346 years 

2 a 100°C 

b i ~80.9°C il &~ 75.4°C il ~ 33.3°C 

< AT(C 
100 

50 

0 
0 20 40 60 80 100 

3 a 1000g 

b i ~809g i ~120g il ~6.06x107g 
< 

1000 

500 

  

1000 0 500 

d =~ 217 years e 1000(1 — 0.979%) grams 

P(t) = 400 x (0.92)" 
b i 368 orangutans il = 264 orangutans 

w 
N
 

o
 

  

rangutans 

400   

(5,264 
  

P(t) = 400 x (0.92)" 
  

                            (years) 
05 5 0   

~ 8.31 years, or ~ 8 years 4 months 

Lo = 10 units b = 2.77 units ¢ ~179m 

between ~ 23.5 m and ~ 44.9 m 

$24000 b 

i 22°C ii 

r=0.85 

6°C 

¢ & 7 years 

iii —2°C 

C 
o 

o 
Q
o
 O
 

  

  

  

  

  

  

  =2) 
                v 
  

¢ ~839min or ~8min23s 

d No, as 32 x 2792 > 0 for any value of t. 

a Wo b ~12.9% ¢ 45000 years 

EXERCISE 5F B 

The graph of y = e® lies 

between y = 2* and 

y = 3%, 

  

One is the other reflected 

in the y-axis. 

  

a e® >0 forall z 

b iy~r412x107? il y~9.70 x 10® 

a ~7.39 b ~20.1 ¢ ~2.01 d ~1.65 
e =~ 0.368 

1 1 3 

ae? be ? ce? de? 

a ~10.074 b ~ 0.099 261 ¢ &~ 125.09 

d ~0.0079945 e ~41.914 f ~42.429 

9 ~ 3540.3 h ~ 0.006 3424 

a e 427 41 b 1—e2® ¢ 1—3e” 

a e®(e®+1) b (e*+4)(e* —4) ¢ (e —6)(e® —2) 

a y 

fl@)=e” 

gla)=e? 

h(z)=e"+3 4 

""""""""""""""""""""""""""""" y=3 

  

~0.135 v



b Domain of f, g, and his {z |z € R} 

Range of fis {y|y >0}, Rangeofgis {y|y >0} 

Range of his {y |y >3} 

11 a 

  

b Domain of f, g, and his {z |z € R} 

Range of fis {y |y >0}, Rangeofgis {y|y <0} 

Range of his {y | y < 10} 

¢ For fi as z — o0, y — 0 

as x — —oo, y — 0T 
Forg: as z — oo, y — —00 

as ¢ — —oo, y — 07 

For h: as =z — oo, y — —00 

as © — —oo, y — 10~ 

  

  

  

  

  

  

  

  

  

                              
  

  

  

  

                                              

12 a i2g b AW (grams) 
~257g (6,40.2), 

~423g 40 
iv ~402¢g 30 (1) - 262 

20| (3-257) 
/(14,423 

10 
2 5 - 

0o 1 2 3 4 5 6 

13 az=3% b ox=—4 

14 a i ~64.6 amps b T (amps) 

il ~16.7 amps gg (1,646 

¢ ~ 28.8 seconds 45 It} — 75e-0-15t 

30 3 
,16.7 

15 { ) 

0 
02468 1012141618> 

t (seconds) 

b Domain of f~1 is 
{z |z >0} 

Range of f~1is 

{ylyeR} 

15 a fl(z)=log.z   

  

19 1 
16 el ~ Z =5 1" ~ 2.718 281 828 

=¥ 

REVIEW SET 5A B 

1 a4 b 1 <3 

2 azx=-2 bx:% ¢x:7% 

3 a iwx22 i ~0.6 

b i z=x145 iz~ —06 iii z~1.1 

4 a 1+e*® b 222 1 10(2%) + 25 ¢ x—49 

az=5 b x=—4 6 k=3 
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7 

8 

9 

10 

11 a 

gla)=ert 

h(z)=3—¢" 

b For f(z): domainis {xz |z € R}, rangeis {y|y >0} 

For g(x): domainis {z |z € R}, rangeis {y |y >0} 

For h(z): domainis {z |z € R}, rangeis {y |y < 3} 

¢ For f(z): as =z — oo, f(z)— oo 

as z — —oo, f(z)— 0t 
For g(z): as x — oo, g(z) — o0 

as ¢ — —oo, g(z) — 0t 
For h(z): as & — oo, h(x) — —o0 

as ¢ — —oo, h(z) — 3~ 

12 a 80°C < 

b i ~26.8°C 
i ~9.00°C 

iii ~3.02°C 

d ~ 12.8 min 0 
0 10 20 30 40 

t (minutes) 

13 a A(t) =10 x (1.15)* 

b i 13.225 m? il &~ 20.1 m?
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<   40044 (m2) 

300   

  200 

100                 

  

  

o = S 15 20 25 30 

d = 24.3 days 

REVIEW SET 5B IS 

1 a =39 b ~ 0517 ¢ ~3.16 

2 a9-6e*+e*®* bax—2-z! c 2" +1 

3 a 8(3%) b (2* —4)(2* +3) ¢ (e*+5)(e* —3) 

4 az=4 bz=-4 cz=0o0r2 

5 a i~23 i ~0.2 b z~038 

6 a %+1m171 ba=-1 

  

7 

8 ac b E < A d B e D 

9 a 181 i 4 b k=9 

10 a y? by ! < ! or E Y Yy - Yy 
VY 

11 a clock: £525, vase: £428 

b clock: V(t) =500 x (1.05)* 
vase:  V(t) =400 x (1.07)* 

¢ clock ~ £1039.46, vase ~ £1103.61 

d 500 x (1.05)" = 400 x (1.07)* 
t ~ 11.8 years 

the vase 

and solve for ¢; 

  

  

  

  

  

  

  

  

                

12 a 1500 < a 
e 1500 ms) 

i ~903¢g 

ii ~544¢g W = 1500 x (0.993)* 

d =~ 386 years (400, 90.3) (800, 5.44 
/ y 

% 400 800 ¢ (years) 

EXERCISE 6A N 

1 a4 b -3 ¢l do e 1 f3 

g -3+ nh1l Q2 i1 k13 133 

2 an b a+2 ¢ 1l—m da->b 

a 100 < 237 < 1000 b ~237 

log 100 < log 237 < log 1000 

2 <log237 <3 

4 a —1<log0.6 <0 b ~ —-0.22 

a ~1.88 b ~2.06 ¢ ~ 048 d ~ 2092 

e ~—-040 f ~351 g =~ —2.10 h does not exist 

6 ax>1 bzrz=1 cl0<z<l1 dz<0 

7 a ~ 100-7782 b A 101-7782 ¢~ 1037782 

d ~ 1002218 e a 10—2-2218 f ~ 101-1761 

g A~ 1031761 h ~ 100-1761 i A 10-0-8239 

j A 1038239 

8 a i ~0477 i~ 2.477 

b log 300 = log(3 x 10%) = log(10'°83 x 10%) = .... 

9 a i ~0.699 i~ —1.301 

b log0.05 = log(5 x 1072) = log(10'°8° x 1072) = .... 

10 a z =100 b =10 cz=1 
— 1 — _ 1 dzfm e z=+10 fzfm 

g z = 10000 h @ =0.00001 i~ 6.84 
i T~ 140 k z ~0.0419 I z = 0.000631 

EXERCISE 6B NS 

1 a 102 =100 b 104 =10000 ¢ 107'=0.1 
1 

d 10° =10 e 25=8 f32=9 
—2 _ 1 1.5 _ P g 272=1 h 315 =27 577 =2 

2 a log,64=3 b log525 =2 

¢ log, 49 =2 d log,64 =6 

e logy(3) =-3 f logyo(0.01) = —2 

g logQ(%) =1 h logs(%) =-3 

3 a5 b -2 ¢33 d2 e 6 f7 
1 s 1 1 g 2 h 3 i -3 i3 k2 13 

m5 n i o 1 p 2 q 0 rl 

3 1 5 3 3 s —1 t g u -3 v 3 w -2 x —3 

1 1 3 4 a2 b -1 ¢ 3 d 3 e 7 f 35 

g -2 h-% i3 

5 az=8 bz=2 cxz=3 d z=14 

1 
6 logya=— 

x 

EXERCISE 6C NS 

1 a logl6 b log20 ¢ log8 d log(£> 
m 

e 1 f log2 g 3 h 2 

i log24 i1 k 0 | log28 

2 a log700 b 1og(§) ¢ log, 6 

d 1og3(g) e log200 f log(0.005) 
40 . 

g log(10* x w)  h logm<m> i log5(§) 

3 a log96 b log72 ¢ log8 d log3(2—85) 

2 
el f log(%) g log20 h log25 i log, (% 

4 a2 b 2 ¢ 3 d i e —2 f -2 

5 For example, for a, log9 = log(32) = 2log3. 

7 aptgq b 2¢+r ¢ 2p+3¢ drt+3q—p 

e r—>5p f p—2q 

8 azxz+z b z+2y crztz—y d21+%y 

e 3y7%z f22+%,7,/73z 

9 a 0.86 b 215 ¢ 1.075



4 

10 log 384 11 4+ logy 45 

EXERCISE 6D N 

a2 b 4 <3 do e -1 
1 1 f 3 g —2 h -3 

1 1 a3 b9 <z d 2 e a 

fl+a g a+b h ab 

a ~ 2485 b ~4.220 ¢ ~0.336 

d ~ —0.357 e ~6.215 

x does not exist such that e = —2 or 0 since e® > 0 for 

all z € R. 
a ~ el 7918 b 40943 ¢ A 86995 

d ~ 05108 e A e—5-1160 f 27081 

g ~ 73132 h A 04055 i A e—18971 

j A e8:8019 

a x~20.1 bz=e cx= 

d z~0.368 e x~ 0.00674 f r=230 

g T ~854 h 2z~ 0.0370 

a iz i z b They are inverses of each other. 

a In45 b In5 ¢ In4 d In24 

6 
e Inl1=0 f In30 g In(4e) h ln(—) 

e 
. . 5 20 
i In20 i In(4e?) I In{ — I In1=0 

€ 

a In972 b In200 ¢ Inl=0 d In16 

e In6 fin(4) 3 In(}) h In2 
3 

i Ini6 i In(16e?)  k ln(—) 1 1n<§) 
€ 

10 For example, for a, 1n27 = In(3%) = 31n3. 

EXERCISE 6E 

1 a 

< 

logy = zlog?2 b logy = log 20+ 3logb 

log M = loga + 4logd d logT:10g5+%logd 

logR:logb+%logl f logQ =loga —nlogh 

logy = loga + xlogb h longlogQO—%logn 

i logL =loga+logb—loge 

log N = %logaf %logb 

I log S = log 200 + tlog 2 I logy = mloga — nlogb 

5 
a D=2 bF:? ¢ P=yz d M=b% 

3 1 2 
eB="" {N=— g P=10z® h Q=% 

n? Ip T 
2 

a D=ex b F=2 ¢ P=yZ 
P 

3,2 a 1 d M=e e B=— fN=— Y - v 

g Q~ 8.66z% h D~ 0.518n%4 

a logyy =logy 3+ b z:logz,(%) 

¢ iz=0 i z=2 il = ~3.32 

az=9 b x=2o0r4 ¢ z=25V5 

d =200 e x=5 fz=3 

a2v=7 b log2® =log7 

zlog2 =log7 

log 7 
z=log, 7= ~ 2.81   

log 2 

  

  

0 
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7 a Taking the logarithm in base a of both sides, = = log,, b. 

b loga® =logb ¢ Usingb, xloga =logb 

logb 

= loga 
logb 

and using part a, = = log, b= 08 
loga 

EXERCISE 6F B 

1 a =177 b ~5.32 ¢ ~3.23 

d ~ —10.3 e ~ —2.46 f ~5.42 

. 8 
2 2 4 a z=16 b z={5~171 5 = 

T 

EXERCISE 6G W 

log 20 1 2 16<20<32 = 2¢0<20<25 b g=—2 
log 2 

¢ x~4.32 
log 4 2 a 3and4 b o= 2840 ¢ z~336 
log3 

1 . 
3 a iz= iz~ 3.32 

log2 

log 2 b oie=820 i oiom 
log 3 

1 ¢ =180y s 
log 4 

d iz=4 i z=4 

1 
e iz=- il z~8.00 

log(%) 

f i 2 =1og(0.000015) iz —4.82 
4 oa x~229 b z~5.13 ¢ z~0.194 

5 az=1Inl0 b z =1In1000 ¢ z=1n0.15 

d z=2In5 e z=3In18 fz=0 

log 2 log (2 . 6 a :og5 _ 3(7) z:lcag06 

log 2 log 1.5 log 0.8 

101og (12 4 a_ los03) () f o—dins 
log 2 log 5 

1 1 
7 azxz= og 3 bx:70g8 cx=-1 

log 5 log 3 

8 az=In2 baz=0 c¢z=In2o0 In3 dz=0 

e x=Ind4 f m:ln(s%‘/g) or ln(%) 

9 a (In3,3) b (In2,5) ¢ (0,2) and (In5, —2) 

10 a = 2.37 years b =~ 8.36 years 

11 a = 3.90 hours b = 15.5 hours 

12 a, b see graph below 

A A (hectares) 

12 000 A(n) = 2000 x 57 

10 000 

8000 

6000 

4000 

2000 : 

—'—»n (weeks) 
0 1 2 

approximately 2.8 weeks.



558  ANSWERS 

13 In = 5.86 years or = 5 years 10 months. 14 9 years iii 

8.4 
15 a %   =0.7% = 0.007, r=1+0.007 = 1.007 

b after 74 months 

16 a =~ 17.3 years b ~ 92.2 years ¢ ~ 115 years 

17 Hint: 0.1 x Iy = Iy x 270:02¢ 

0.1 = 27992t and solve for ¢ using logarithms. 

  

  

  

  

  

  

     

  

  

  

  

                
  

  

  

  

  

            

  

  
  

  

  

  

  

                          

  
   

iv zzfg v [Tl (z)=3"-1 
18 Hint: Set V =40, solve for ¢. . L . 

¢ i Domainis {z|z > —1}, Rangeis {y|y € R} 
19 a P imi b ~ 4.32 weeks . . . . 

8000/ mice) i vertical asymptote is @ = —1, x-intercept 2, 
¢ t— logP —3 y-intercept 1 

6000 P(t) = 1000 x 2} log 2 iii y 

4000, 
y=1—logy(x +1) 

2000 T 

00 T 3 3 » ¢ (weeks) : 

2 a _ 3 lsW We=8 v flz)=3""_1 
0.041og 2 

1000 % d i Domainis {z|x >2}, Rangeis {y|yc R} 

© 1 t & 141 years i vertical asymptote is x = 2, z-intercept 27, 
il ¢~ 498 years no y-intercept 

iii 

0 
0 100 t (years) 

21 a 

v =7 v fY(x) =52+ 2 

e i Domainis {xz |z >2}, Rangeis {y|yc R} 

0 100 t (min) il vertical asymptote is « = 2, x-intercept 7, 
no y-intercept 

In96 — In(T" — 4) Y P 
bit=—-r—o iii 

0.03 

¢ i =~ 50.7 minutes il &~ 152 minutes 

—5log(1— 2% 
22 t= —oloe(1 ) s 

log 2 

23 a decreasing b i 3900 ms~! il &~ 2600 ms—1! 

¢ ~118s 
v oz =27 v fYz) =57 42 

EXERCISE 6H W f i Domainis {z |z >0}, Rangeis {y|y <€ R} 

1 a i Domainis {z |z >0}, Rangeis {y|y€c R} i vertical asymptote is = = 0, z-intercept v/2, 

i vertical asymptote is = = 0, z-intercept 4, no y-intercept 
no y-intercept iii 

iii 

1z 

voao=2 v T (@) =201 voz=2 v =27 
b i Domainis {z |z > —1}, Rangeis {y|y € R} 

. . . 3 2 a | A translation through ( 0 ) 
i vertical asymptote is @ = —1, x and y-intercepts 0 —4



i Domainis {z |z >0}, Rangeis {y|y e R} 

  

iii vertical asymptote is @ = 0, a-intercept e?, 

no y-intercept 

  

v ffil(x) — ext4 

b i A translation through (; ) 

il Domainis {z |z > 1}, Rangeis {y|y € R} 

  

vertical asymptote is = = 1, x-intercept 1+ e~2, 

no y-intercept 

  

v fTiz)=e*"2 41 

¢ i A vertical stretch with scale factor 3, then a translation 

through ( _01 ) 

ii Domainis {z |z >0}, Rangeis {y|y <€ R} 

3 
5 

  

iii vertical asymptote is & = 0, z-intercept e 

no y-intercept 

  

v () = e%;l 

3 a Ais y=Inz as its z-intercept is 1. 

b 

  

y=1Inxz 

¢ y=Inz has vertical asymptote = = 0 

y = In(xz — 2) has vertical asymptote z = 2 

y = In(x + 2) has vertical asymptote = = —2 

4 y=In(z?) =2Inz, so she is correct. 

This is because the y-values are twice as large for y = In(x?) 

as they are for y = Inz. 
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2Inb 2 6 a bz 1 

7 f’l(z):%lnz 

s (flog)@) = 1@z —1) 
b (go) @) = () 

b 2lnb+x cx=   

  

REVIEW SET 6A IS 

1 a % b —% cat+b+1l 

2 a3 b8 ¢ -2 d i e 0 
1 1 £l g -1 h 3 k>0 k#1 

3 a ~1431 b ~-0237 ¢ ~2602 d ~3.689 
25 4 a Inl4d b In(%) c ln(—) d In3 
€ 

5 a logl44 b logz(%) ¢ log, 80 

6 a 24+2B b A+3B ¢ 34+ 3B 

d 1(A+B) e 4B —2A f 3A—2B
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1 

13 

14 

16 

17 

19 

20 

21 

< 

d 

  

  

  

    

  

  

  

    

ANSWERS 

log M = log a + nlogb b logT:10g57%10gl i 

log G = 2loga + logb — logc 

x ~5.19 b z~4.29 ¢ z~ —0.839 

r=1In3 b z=1In3 or In4 

s el:2 
P=TQ" " b M=— 

@ VN 

=0 or In(2) b z=e2 
22 a 

=3 b oz~ 827 ¢ z~0.0316 

. log 50 - 
iz= il z~ 564 

log2 

1 i g o8t il @071 
log 7 

i —2 ii 9.02 = —" z 9. 
log(0.6) 

b 
1 . 

log,, (E) =—z 15 Hint: 2% _5x 2% =0 

2 y=tlhz 

z =€’ brz=e3 ¢ = =1n400 

Inl1-1 
r=———— e x=2In30 

2 

1 7 3 ln(E) 

A translation through (:; ) 23 a9 b Inb 

Domainis {z |z > —2}, Rangeis {y|yc R} REVIEW SET 6B N 

vertical asymptote is @ = —2, x-intercept is 7, 1 a % b % catb 
y-intercept is &~ —1.37 . 
g-1(z) = 3542 2 2 a7 b -3 ¢ —3 

3 a ~ 1015051 b ~ 10—2-8861 A 10—4.0475 

4 a3 b -3 c¢20 dl-uz 
2 6 5 a3 b 2 c 8 

6 a b5 :% d 3z e —zx f logz 

7 A me2995T b o 80064 ¢ o —2.5903 

log 7 8 a iz=-2 i ea121 
log 5 

. 1 L 
b iz=- iz~ —3.32 

log 2 

~ 13.9 weeks b =~ 41.6 weeks ¢ ~ 138 weeks 9 a In3 b In4 ¢ In125 

A 4.96 years or ~ 4 years 11% months b ~ 74.9% o . In70 log(%) lolog(l—:) 
T=-— = =5/ 

i Domainis {z |z > —4}, Rangeis {y|y € R} 2 log 1.3 3log2 

i vertical asymptote is x = —4, z-intercept —2, 1M1 z=1 

y-intercept 1 12 a logP =log3+ zlogh b logm = 3logn — 2logp 

i 13 Hint: Use the change of base rule. 

2 
1w ar== b K=nVi 

Y 

15 a 5In2 b 3In5 ¢ 6In3 

y=log,(z+4) -1 

i Domainis {z |z >0}, Rangeis {y|y e R} b 

  

o . . _ - 9 log 5 
ii Vemc.al asymptote is = = 0, z-intercept e =, 17 a (27 +4)(2% —5) b z— 08 

no y-intercept 
 



  

¢ Domain of g is {x | € R}, Rangeis {y|y > —5} 

Domain of g~ is {a |« > —5}, Rangeis {y|y € R} 

d g has horizontal asymptote y = —5, 

z-intercept is ln(%) ~ 0.916, y-intercept is —3 

g~ ! has vertical asymptote = = —5, 

x-intercept is —3, y-intercept is ~ 0.916 

    

     

  

19 Hint: Set T = 40, and solve for ¢. 

20 a 2500 ¢ b =~ 3288 ycars ¢ ~42.3% 

2log9 1—-In2 
21 ag=2-28 b z=1In30 cx= o 

log 5 3 

22 a r——2 

In2 ~0.693 

b 

  

  

  

  

  

  

  

  

                            (number of c} oiTefl 

0 10 20 30 40 50 
  0 

b i & 3.58 seconds ii &~ 5.55 seconds 

¢ ~ 1.34 scconds longer 

EXERCISE 7A B 

1 a3 b Z <% d %5 e o5 

f 3z g = h 3 iom j dm 

I Ix | 37 m Z n 4 o 2z 

2 a ~0641° b ~239° ¢ ~555¢ d ~3.83° 
e ~6.92¢ 

ANSWERS 561 

a 36° b 108° ¢ 135° d 10° e 20° 

f 140° g 18° h 27° i 210° i 22.5° 

a ~114.59° b = 87.66° ¢ ~49.68° 

d ~ 182.14° e ~ 301.78° 

aF b B <D d A e E fC 
  

  

  

  

   

EXERCISE 7B 

1 a 7cm b 12 cm ¢ ~13.0m 

2 a 6cm? b 48 cm? ¢ ~8.21 cm? 

3 a arc length &~ 49.5 cm, arca ~ 223 cm? 

b arc length ~ 23.0 cm, arca ~ 56.8 cm? 

4 a =~0.686° b 0.6° 

5 a 0=0.75° arca = 24 cm? 

b 0 = 1.68°, arca = 21 cm? 

¢ 0~ 2.32¢ area = 126.8 cm? 

6 a ~315m b ~9.32m? 

7 a =591lcm b ~18.9 cm 

8 a a~0.3218° b 0~ 2.498° ¢ ~ 387 m? 

9 ao0=% b 6cm 

10 a =11.7cm b rx~11.7 ¢ =37.7cm d 0=~ 3.23° 

11 ~25.9cm 12 b =~ 2h 24 min 13 ~ 227 m? 

14 a 4cm b i ~2.16 cm? il ~29.3 cm? 

EXERCISE 7C 

O el T R 
| [ [ % | 

2 a i A(cos26°,sin26°), B(cos146°, sin146°), 

C(cos 199°, sin 199°) 

il A(0.899, 0.438), B(—0.829, 0.559), 
C(—0.946, —0.326) 

b i A(cos123°, sin123°), B(cos251°,sin251°), 

C(cos(—35°), sin(—35°)) 

il A(—0.545, 0.839), B(—0.326, —0.946), 
C(0.819, —0.574) 

a0 Lw~oror i 2 ~0.866 

» [l      
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4 a 

N measure measure 

ANSWERS 

  

  

b i land4 ii 2and3 il 3 iv 2 

5 a cos400° = cos(360 + 40)° = cos40° 

b sin3Z = sm(57r + 27r) — sin 122 

  

7 7 

¢ tan 1387" = tem(lg7r 311') = tan(fnT”) 

6 Band D 7 Band E 

a i ~098 il 20985 iii ~0.866 iv ~0.866 

v 0.5 vi 0.5 vii &~ 0.707 viii ~0.707 

b sin(180° — @) = sin @ ¢ sin(m — 0) = sin6 

d The points have the same y-coordinate. 

e i 135° i 129° i 2 v 2z 

9 a i =0.342 il ~—0.342 iii 0.5 

iv —0.5 v =~ 0.906 vi ~ —0.906 

vii = 0.174 vili ~ —0.174 

b cos(180° — ) = — cosf ¢ cos(m—0) = —cosl 

d The z-coordinates of the points have the same magnitude but 

are opposite in sign. 

e i 140° i 161° i 4= v 3 

10 tan(m —0) = —tan@ 

11 a = 0.6820 

d ~0.9135 

b ~0.8572 ¢ ~ —0.7986 

e ~ 0.9063 f ~ —0.6691 

—sind, b sin(—0) = 

¢ Q has coordinates (cos(—0), sin( 

(cos 0, —sin ) 

cos(—0) = cos® and 

cos(—0) = cos @ 

—0)) or 

(since it is the reflection of P in the z-axis) 

sin(—0) = 

d cos(2m — 0) = cos(—0) = cosf 

—sin 6 

sin(2m — 0) = sin(—0) = 

e tan(2m — 0) = —tan6 

—sin 6 

13 a The angle between [OP] and the positive z-axis is (% — 9). 

Pis (cos(% 70) s sm(— - 9)) 

b i In AOXP, sinf = xe = E 
op 1 

XP = sin6 

ii In AOXP, cosf = ox % 
‘op 1 

OX = cosf 

c i cos(%70) = XP = sin@ 

ii sin(% 79) = OX = cosf   

  

d i cos%:sin(g—%):smfi"0809 

— — 3m o i sin§ = cos(% %) cos = ~ 0.383 

1 
e tan(Z — 0 

( ) tan ¢ 

EXERCISE 7D    
  

tan % is undefined 

  

2 2 b 2 
3 1 1 1 5 a3 b 2 <3 d 7 e —37 f1 

sv2 h 3 i i2 k-1 1 -3 
2 T 

6 45T 5T < T T 

d 0, 27 z%,%" f%fl%’ 

9 a0=35 bo=1Z 2 co=m 

do=% e g=23r 3z fo=2 3 

g 0=0,m2r ho=2Z3% 5% Tx 
i p— Bm 11 _m 2n 4n 5 
Po=.% 10=553% 

10 ab6=km kcZ b 0=Z+km kEZ 

EXERCISE 7E W 

1 acost‘):i-‘@ bcost‘):i# ¢ cosf = =£1 

d cosf =0 

2 asinezi% bsin6:i4 ¢ sinf = 

d sinf = +1 

3 asinfl:% bcost‘):fg :cosfl:% 

g 12 d sinf = —4% 

4 atan9—77 b tanf = —2v6 :tanfl—% 

d tanf = g 

2 3 4 3 5 asmef\/fi, cos @ G bsmé‘fg cosf = —% 

d sinfl—f%g, cos(?’—i3 

—k -1 
6 sinf = ——, cosl = —— 

VEZ+1 VEZF+1



EXERCISE 7F B 

1 6 ~ 76.0° 

0 ~ 36.9° 

6 ~ 81.5° 

6~ 0.322 

6 =~ 0.656 2.49 

6~ 0.114 or 3.26 

256° b 

d 

f 

b 

d 

f 

0~ 1.82 or 4.46 b 

d 

f 

h 

b 

d 

f 

143.1° 

261.5° 

3.46 

or 

or 

or 

or 

or 

0~ 1.88 or 5.02 

0~ 0.876 or 4.02 

0~ 0.0910 or 3.05 

0~ —95.7° 

0~ —56.3° 

0 ~ —39.8° 

or 95.7° 

or 123.7° 

or 140.2° 

w 

A
 

W
O
 

A 
O
 

A 
O
 

n 
0 ~ 33.9° or 326.1° 

=90° or 270° 

0 ~ 83.2° or 276.8° 

6~ 1.13 or 5.16 

6~ 1.32 or 4.97 

0~ 0.167 or 2.97 

=0, m, or 27 

0 ~ 3.58 or 5.85 

0~ 0.674 or 5.61 

0~ 219 or 4.10 

0 ~ 53.1° or 126.9° 

0~ —36.9° or 36.9° 

0 ~ —140.5° or —39.5° 

EXERCISE 7G I 

1 ay=+V3z by==z :y:771§z 

2 ay=+vV3z+2 by=-—3z :y:%x—Z 

3 a 0=1.25 b 0~ —0.983 ¢ 0~ —0.381 

4 a 0=~232° b 0~ 117° ¢ 0~ —11.3° 

REVIEW SET 7A B 
2 5 5 1 a b 2% < 5 d 3w 

2 a 72° b 225° ¢ 140° d 330° 

3 v, 

xT 

4 a (0.766, —0.643) b (—0.956, 0.292) 

¢ (0.778, 0.629) 

5 12cm 6 a % b 15° ¢ 84° 

7 a ~0.358 b ~ —-0.035 ¢ ~0.259 d ~1.072 

8 a cos360° =1, sin360° = 

b cos(—m) = —1, sin(—7) =0 

9 a sin%'f 23, cos%':—%, tan%":—\/g 

i 8m _ A3 8w _ _1 8m _ b smT"'—T, cosT"' —3 tanT"——\/g 

10 a i60° ii 3 b % cm <z cm? 

_ 1 _ .7 
1 tanzfm 12 sinf = +-7 

3 1 2 __3 13 a % b0 ¢3 14 a 7 b >3 

i - - 2 — o6 15 perimeter = 12 cm, area = 8 cm 16 tanf = T 

17 a 6=0.841 or 5.44 b 6~~3.39 or 6.03 

¢ 0~1.25 or 4.39 

— 1 — 18 ay=_gz b y=+v3z+3 

REVIEW SET 7B IS 

1 a ~1.239° b ~2.175¢ ¢ R —2.478° 

2 a ~171.89° b ~83.65° ¢ =~ 24.92° 

d ~ —302.01° 

3 ~ 111 cm? 
4 M(cos 73°, sin73°) & (0.292, 0.956) 

N(cos 190°, sin 190°) ~ (—0.985, —0.174) 

P(cos 307°, sin307°) ~ (0.602, —0.799) 

ANSWERS 

5 ~ 103° 6 radius ~ 8.79 cm, area ~ 81.0 cm? 

7 a cos‘%’r =0, sin%” =1 

b 005(7%) =0, sin(fg) =1 
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8 a sin(r—p)=m b sin(p+27)=m 

m 
¢ cosp=+V1-m? d tanp = ——— 

V1—m? 

9 a 150°, 210° b 45°,135° ¢ 120°, 300° 

— _ 2r 4m 5 10 af=n b o=7% 2 F 38 

11 a133° b Ur ¢ 174° 

12 perimeter ~ 34.1 cm, area ~ 66.5 cm? 

7 7 3 14 a 345 b —é§ <3 

1 1 1 15 a 21 b 11 ¢ -1  d3 

17 a 6=~0.322 b 0~1.95 

EXERCISE 8A NS 

1 a periodic b periodic ¢ periodic d not periodic 

e periodic f periodic g not periodic h not periodic 

2 a height above 
d 

'me> 

(sec) 

b A curve can be fitted to the data. 

¢ The data is periodic. 

i y =32 (approximately) il ~64cm 

iii & 2 seconds iv ~32cm 

3 a y o ° 
1 ° ° o ° 

‘ 3 § 10 1 % 
o o 

o 

Data exhibits periodic behaviour. 

b 

Not enough information to say data is periodic. 

EXERCISE 8B NS 

1 a0 

b i 0=0,m2m 37, 4 ii€:37",77" 

g — 57 13w 17 i _ 2 Im 8 o= M= ls wo-g 3l 
c i 0<f<m 2r<6<3m 

il r<O<2m 3m<6O<dm 

d {yl-1<y<1} 
2 al 

P — 3r bm T i 0= b '9*%7’7’7 i 0=0,2m, 47 

o= % dr &z lx iy o= B Uz L  
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: x  3x 5nm  Im |0<0<3, T<9<T’ T<9<47r 

o 3 5 T i Z <0<, F<oO<E 

{yl-1<y<1} 

EXERCISE 8C I 

1 a 

b 

A
0
 

o 
-
0
 

O 
an 

a 

< 

a 

vertical translation 1 unit downwards 

horizontal translation 7 units to the right 

vertical stretch, scale factor 2 

horizontal stretch, scale factor % 

horizontal stretch, scale factor 4 

translation % units right and 2 units upwards 

vertical stretch, scale factor % 

reflection in the z-axis 

translation % units left and 2 units downwards 

  

G 
2 10 2 = b 3% 2 d £ e 6m f 100 

_2 _ _1 _ = _ = b=¢ bb=3 cb=5 db=3 eb=gF 

maximum 4, minimum —4 b maximum 8, minimum 2 

maximum —2, minimum —6 

4 b 2 ¢ {y|-2<y<6} 

. 2 . . 
|a| = amplitude, b= —, ¢ = horizontal translation, 

period 

d = vertical translation 

    

  
y=sinz — 0.5 

-2 
v 

Ay 
2 . 

y=sin(z —2) 
1 

™ 3w dm T 
-1 

-2 
v 

AY 
2 . 
1 y=sin(z+2) 

2 i w 
1t 

-2           

   

  

    dr T 

y=sin(z —1) -2 

y=sin(z+5§)+2 

   

y = sin 3z
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n 
h Yy = Ccos 2z 

= 
x 

o 

> 
€T 

a 

b b iy=2 i y=—2v2~ 283 

11 ad>3 b d<-3 ¢ —3<d<3 

12 a A horizontal stretch with scale factor %, then a vertical stretch 

with scale factor 2. 

b A vertical stretch with scale factor 2, then a reflection in the 

< T-axis. 

¢ A vertical stretch with scale factor 3, then a translation 5 units 

downwards. 
  

d A horizontal stretch with scale factor %, then a translation 

% units left. 

  

  

  

y=cos2x+1 

  

  

  

      f 

—or - v T 2 T 

-+ 
< Yy 4 

1 s 1 g Ay y=3sin(z+§) -5 

— — - - W v 
xT 

-1 

9 y=cos(z+7) -1 vy
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b 15 cm 

¢ i ~160.0 cm il ~138.9 cm iii &~ 158.8 cm 

iv ~ 138.9 cm 

  

  >t (s) 

  

b 4.cm 

¢ no (ball diameter is 4.28 cm, gate height is ~ 3.07 cm) 

5 T(t) = 5.2sin(F(t —8)) +10.6 °C 

6 H(t) = 0.6c0s( (¢t — 1.5)) +0.76 m 

7 a 

  

  

14 
b d cd 

15 aa=4,d=1 ba=-2d=3 ¢a= 

16 a y=sinz—2 b y=sin3z cy:sin( +§) 

2 d y=2sinz+1 y=4sing -1 f y=6sin=F* 

17 a y=2cos2z b y=cos§+2 ¢ y=-5cosEE 

  

EXERCISE 8D.1 W ¢ Both graphs are periodic with an amplitude of 10 m and a 

      

1 a period of 100 s. The graphs differ by a horizontal translation 

of 25 s and the principal axis is also translated by 12 m. 

d i H(t)=10sin(Zt) +12m 

i d(t) = 10sin(Z(t +25)) m 
Note: The function of horizontal displacement of the light 

= will be different depending on how the coordinate 

¢ 6 12 18 24 system is defined. 

b i 26°C i 200 ¢ 32°C, at 6 pm 8 a H(t)="Tsin(35(t—5.9)) +9.2m 

2 b H(@m) () =7sin(Z(t—5.9) +9.2 

     20 ¢(h) 

b highest = 10 m, at midnight, midday, and midnight the 

  

  

  

  

      

next day 9 a H(t)= 6cos(%t) b d(t) = 12sin2nt 
lowest = 2 m, at 6 am and 6 pm 

¢ no (water height is 4 m) EXERCISE 8D.2 
1 a 30 5 3 a 25A T(°C) s . 

20 + o o 

""""""" 15| 0 ¢ © ° 
10 

5 
» { (min) 0 d 

  

                

60 120 180 0 2 4 6 8§ 10 12
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b The data appears to be periodic. 

ibz% il ar~6.5 il d~205 iv c~4.5 

d Using technology, T' ~ 6.15sin(0.575t — 2.69) + 20.4. 
Our model was a reasonable fit.   

2 a Tad4bcos(E(t—2))+115 

g7 ey 
25 

20 

15 
10 

5 

  

  

  

  

  

    onth 
0 > 

0 2 4 6 8 10 12 14 
                

  

¢ Using technology, 7'~ 4.29 cos(0.533t — 0.805) + 11.2. 

3 a Ta95sin(2(t—10.5)) - 95 
      

  

  

  

                
  

  

  

    
  

      

                  

    

  

b 12”(0 o 
> 1 1 

0 month 
— 1 2 
0 5p=3 2 kez 

15 7 a A vertical stretch with scale factor 2, then a translation 
920 Z units left and 1 unit downwards. 
_a5Y b : : v 

¢ The model is a reasonable fit, but not perfect. ; 

b 0k E ) i i : : . 
20 i i i fy=2tan(z+7) -1 

0% i : W : 
10 o o - : i : : f— 

—27 i / ™ T ¢ 0 .o 05 o. .1.5 » 1 (seconds) : 1 

-10 
.. I.. 

—20 : i i i 

~aot : : : : 
b H ~ 15.0sin(5.24¢t — 1.57) +0.000170 ¢ ~ 14.5 cm 

i _ T 
d The spring will not oscillate indefinitely at the same rate. 8 a 1 (fog)(z)=tan (2:” - E) 

EXERCISE GE it (g0 f)(@) =2tanz = 5 
1 a A horizontal translation - units to the right. b i 715 i —% . 

b A vertical stretch with scale factor 4. ¢ i period 5, vertical asymptotes z = _7r’ kel 
¢ A horizontal stretch with scale factor % . . 2 

i i 1 . ii period 7, vertical asymptotes = = % +km, kEZ 
d A horizontal stretch with scale factor 7 then a translation i 3 i v & B i i 

1 unit downwards. 

e A vertical stretch with scale factor %, then a reflection in the 

z-axis. 

f A translation 2 units upwards. 

2 aZ b4r <1 d2 edm I - 
n xT 

km km 
3 a i —, kez iiz=2+4+—, keZ 

2 it 

b i ik, keZ i e=%+kr, keZ 

¢ i Z42%kn, kelZ i e=IF +2%kn, kez 
4 a ; ; ; ; 

        =
Y
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REVIEW SET 8A e 7 a A vertical stretch with scale factor 3, then a horizontal stretch 

1 a not periodic b periodic with scale factor 4. 

2 a minimum 0, maximum 2 b minimum —2, maximum 2 b A translation % units right and 1 unit downwards. 

3 a 10w b Z ¢ 4m d % 8 a y=—4dcos2z by:cos%JrZ 

  

4 Function Period | Amplitude Range 

  

  

     
      

b y=sin(z—%)+2 Ay i i . i 
3 10 a A horizontal stretch with scale factor 3 then a vertical 

9 translation 2 units upwards. 
x 

1 © 3 
c . 

< — 
—27 - ¢ ™ 2 z ' 

v 
= tan3z + 2 

< 

  

  

  

       

d 
1 

12 

e AY 4 

y=Scosz i o™t days) 

b i 075 ii 0.25 ili ~0.835 v ~0.165 

¢ once every 30 days d January 16, February 15 

-1 _ L (m o i 13 a T(t) = 3.7sin(&(t — 8.5)) + 104 °C 
b 

f 15 

     

  

T(t) = 3.7sin ({5(t — 8.5)) + 104   20 ¢ (hours)  
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14 a maximum: —5°C, minimum: —79°C e Y 

b & 700 Mars days ¢ T = 37sin(0.00898n) — 42 5 

d 0200 400 600 800 1000 1200 1400 ; ; 
0 j i i 27 . L n (days - +— ; > 

—20 i z 5 T 

—40, -3 ; 

—60 : : 
o ! 

-80 
100710 f               

e Using technology, 

T ~ 36.5sin(0.009 01z — 0.0903) — 43.2. 

Our model fits the data well. 

REVIEW SET 8B I 

1 a The function repeats itself over and over in a horizontal 

direction, in intervals of length 8 units. 

  

    

  

   

  

     

  

  

     
  

  

  

  

      

b 18 ii5 i —1 8 a y=4sinz+6 b y:4cos(z7§)+6 

2 a A translation Z units left and 1 unit upwards. 9 

b A horizontal stretch with scale factor % 

3 a 6m b 7 

-1 — _ 2 4 ab=g3 b b=24 < b= 

5 a minimum —8, maximum2 b minimum %, maximum 1% 

6 ay=56 by=-4 

7 a 
10 a= 

11 a A reflection in the z-axis, then a horizontal stretch with scale 

factor % 

b A vertical stretch with scale factor 2, then a horizontal stretch 

with scale factor 2, then a translation % units right and % unit 

upwards. 

b 

- T ™ = o % b 20m ¢ 10m d 12 seconds 

v 13 a 

< 

b H(t) =sin(m(t —1.5)) + 1 

d AV 14 a axT.05 bxZ, cx105, d~24.75 
2 y=2sinz—% b 40AT(QP) 

30 

> 
v 20 

10 

t iths o ()               

  

  

0 2 4 6 8 10 12 14
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¢ Using technology, 7'~ 7.20sin(0.488t — 1.08) + 24.7. c = % or STW 

The model fits reasonably well but not perfectly. x 5n 3r 13n 1T P 

120 120 4> 120 120977 
EXERCISE 9A.1 B 

1 a 2~0.3,28, 6.6,9.1, 12.9 b 509,08 12.2 o 
¢ £~03 28 d 238,56 bz =0, 5%, or 2w 

2 ax~1251,74 bz~ 44,82, 10.7 dz=0 %7 %”, or 27 

¢ z~5.2 d z~2538 ba=-2 b=3 
3 a x~04,1.2,35,4.3,6.7,7.5,9.8, 10.6, 13.0, 13.7 db=2L1 g—_4 

b z~ 1.7, 3.0,4.9,6.1,8.0,9.3, 11.1, 12.4, 14.3, 15.6 2 
¢ r~3246 d z~1.6,3.1,438,6.2 

b oa x~11,42,74 b z~2253 
¢ x~1.3,44 d z~20 & oz Im 5w 13w 4m 19w . llm 

’ - 30 12 6 

EXERCISE 9A.2 W 

1 a x=0.446, 2.70, 6.73, 8.98 b rg=ZX I 31 o 57w 
b =z~ 252, 3.76, 8.80, 10.0 ‘7" 2027 I 3 

¢z~ 0.588, 3.73, 6.87, 10.0 d x=, F or 55 

2 a xz~ —0.644, 0.644 b =~ —4.56, —1.42, 1.72, 4.87 

¢z~ —2.76, —0.384, 3.53 
EXERCISE 9B 

3 a z~1.08,4.35 b z ~ 0.666, 2.48 
4 @2~ —0.951 0.234. 5.98 1 a i 7500 grasshoppers ii A 10300 grasshoppers 

’ ’ b 10500 grasshoppers, when ¢ = 4 weeks 
EXERCISE 9A.3 W 

5 5 . ; ¢ iatt= 1% weeks and 6% weeks 
1 az=3For=f b z==F or F ¢ z=For g - ol 

3u v S i at t =93 weeks 
dx:T e x= % or ¢ f =0, or 2w 

d 251 <t<5.49 
2 5 

2 az= % or Tfl- bz=m cr= % or Tfl- 2 a i 12 metres ii 2 metres b 100 seconds 

3 az= Q'T‘K’ %r‘ 8_7‘”’ or NT" baz=2Z, 377(‘ QT”’ or % ¢ at approximately 6.55, 43.5, 107, and 143 seconds 
3273 3 K R ) 

¢ z:%, 5%’977(~0r1+i‘,r 3 : 1 m above ground b at t =15 min ¢ 3 min 

- _2 4 5 bassE o Efak 
__5 3 T Co=- o % ol 

5 az:%,%”,%’,or%" bz:%or%’ 

cz=1%, %T",‘l:—;",or% 

6 a0<2<dn bo<I<% e 0570 < ¢ < 2.43 min 
= x5 4z« x o lix 4 a 400 water buffalo 

CaSsThysSy TESTTES T b i 577 water buffalo i 400 water buffalo 
e 7§ < 2(z— %) < 77" f 2r<—-z2<0 ¢ 650, which is the maximum population. 

T d 150, after 3 years e t=0.262 years 
7 a —3m<3z< 37 b -2<-<7% . s 1 4 5 a i true i true b 116.8 cents L™ 

¢ 737"<x,%<% d 737”<2x+%§57” ¢ on the 5th, 11th, 19th, and 25th days 
-1 e —2r < —2z <2 fO0<T—a<2r d 98.6 cents L on the 1st and 15th days 

6 a H(t)=3 Zt) + 4 b t~ 146 
8 aax=25% 3 or X ®© COS(Q)JF $ 

ba=1, STW’ 7_(;\', HTW' H‘Tfl', or % EXERCISE 9C.1 W 

cz=0, %r’or?fl' 1 a 2sinf b 3c0592 ¢ 2sinf d sinf 

o 11m 10 93 e —2tan6 f —3cos® 0 
— Im llm 19w . 23w 

g A= T T 2 a 2tanz b tan’z ¢ sinz d cosx 
— 1lr 13m 23w 25 35 

b 2=5 55 q5e T80 T80 O I8 R (2 
:x:%,%",%",or‘%’ dxz%or‘%" cos 

e x—A4m f p= 31 3 a 2cosf b —tan6 <0 d —tan® 
3 1 1 

10 ac=2Z, 29#3 49«’ 597:7 7;’ 8;’ 13#) 1;«’ 1372 1;‘;’, e s f 2cosf g tan@ h tan6 

167 17m 
9O g i 2tan6



EXERCISE 9C.2 N 

1 

3 

  

3 b —2 ¢ —1 d 3cos?0 
4sin? 0 f cosf g —sinZ0 h —cos?6 

—2sin?0  j 1 k sin6 | sin6 

1+ 2sin6 + sin? 0 b sin?a —4sina+4 

1 
—2tana d 1+ 2sinacosa 

cos? o 
1—2sinfBcosf f —4+4cosa—cos’a 

sin?z — tan? x b 13 

EXERCISE 9C.3 IEE—————— 

1 

N
 
=
@
 

0
 
n
 

(1+sin@)(1 —sinf) b (sina + cosa)(sina — cos a) 

(tanca + 1)(tana — 1) d sin3(2sinf8 — 1) 

cos (2 + 3cos ¢) f 3sinf(sin@ — 2) 

(tan @ + 3)(tan 0 + 2) h (2cosf +1)(cosf + 3) 

(Bcosar+1)(2cosa — 1) | tana(3tana —2) 

(2sinz + cosz)(sinx + 3 cos ) 

5m 3 T = or b no real solutions 

  

I 27 
6> 6’ 2 

— I op 8T z=F or & 

1+sina b tang —1 ¢ cos¢ —sing 

) 1 cosf 
cos ¢ + sin ¢ e — f 

sina — cos a 2 

EXERCISE 9D W 

2 

4 

10 

12 

14 

15 

16 

a 

e 

1 

m 

q 
3 
2 

a 

< 

a 

b 

24 7 24 7 1 
3 “3 ¢ % 3 a-5 by 

cosazfé b sin2a:% 

sinfi:—@ b sin2fl:—4425@ 

1 2v2 _ 1 V2 
3005 v . | 
sin 2« b 2sin2a < %sin?a d cos23 

—cos2¢ f cos2N g —cos2M h cos2a 

— cos 2a j sin4A Ik sin6ar I cos80 

—cos6 n cos 10« o —cos6D p cosd4A 

cos r —2cos6P 

z=0,2, 7 4 or2r b z=For L 
x =0, m, or 21 

_lm Tm om S 
20 120120 7 T 

z=0,2, 4 or2r b o=2Zor3 
_x Im 1lm 

=73, %>0 75 
—(0 & I 57 Im 3m llm z=0,%, 3, 5. m G, 5, G or 2w 

— — 5m z=7Z fo=7For% 

Ci1is y=cosz, Cois y=cos2z+1 

A(Z, L), B(Z.0), C(3£,0), D(3Z, 4 

REVIEW SET 9A W 

s
 
W
P
 

2~ 2.0,4.3,83,10.6 b x~05,58,6.7,12.1 
z ~ 0.392, 2.75, 6.68 b z~5.42 

r~1.12,5.17, 7.40 b z~0.184, 4.62 

z:%"or“T"' bz:%or%‘ 

2 5 e=5 L oy 

ANSWERS 571 

_ & 3 5r Tx 9x llm 13w 15m 
5 ar=g s 8T 

— 3 —n 5m Im Lim b == ¢ z=g, F, F, o =g 

6 ax=03 2r, F ordr b a=2% 2 IZ or 3f 

7 a 5000 beetles b smallest 3000, largest 7000 

¢ 05<t<25 and 6.5<t<8 

  

8 a cosf b —sinf ¢ cosf 

1 
d 1—cosf e — [ 

sina + cosa 2 

VT 3V7T 1 
9 a = b == ¢ -5 

11 az=0m2r b =2 2 12 co=48 

REVIEW SET 9B B 

1 a z~—-6.1, —-34 b z~0.8 

2 a r~1.275.02 b z~1.09,2.05 

3 a x~ 133,447,761 b z~5.30 

¢ x~ 283597 9.11 

_ 4n 5r 10x 1llm 16 17 _5 
4o =g, S g, Ty T Of gt b ox==5F 

_ 7r 13 19 
€= T3 190 O I3 

5 az=—-Forg bxz—%",—%,%,or‘%’ 

—_2 2 cr=F gl 
4r 57 10w 1lw 16m 17T 3 7w 11 

6 2 g5 g g BT 
7 a 28 milligrams per m® b 8:00 am Monday 

8 a cosf b —sing ¢ 5cos?0 d —cosf 
120 119 _ 9 a 5 b 55 1M o=3 12 1.5m 

EXERCISE 10A B 

1 a The cat is not black. bz is not prime. 

¢ The tree is not deciduous. 

2 a False, x may be —3. b True, 32=09. 

¢ False, 22 =9 does not imply that z = 3. 

3 a True, as the square root of any positive number is real. 

b False: for example, \/6 =0 € R but 0 is not positive. 

¢ False, /T € R # = is positive. 

4 a “If Socrates is an animal, then Socrates is a cat.” b false 

5 a cquivalent b not equivalent 

6 We need to turn cards D and 3. We do not need to turn cards K 

and 7. 

EXERCISE 10B S 

1 b If 22-2—-6=0 then == —2o0r3. 

Hint: Use Pythagoras’ theorem. 

Hint: Let the middle number be x. 

Hint: (a — b)2 >0 forall a,beR. 

Hint: sin 260 = 2sin 6 cos§ 

Hint: The 3-digit number “abc” has value 100a + 10b + c. 

a 422 =3z » 4x=3 
b (z+3)2—z)=4 % z+3=4V 2—z=4 

0
 

O
 

N
 

O
 

P
 

EXERCISE 10C B 

1 a Hint:  (a+b)2%—(a—b)? 

=la+b+ (a—Db)la+b— (a—0b)] 

2 a=14
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3 Hint: (2 —y)° + (z—9)° = (2 — y)*[(z — 9)* + 1] 
4 a nt*+44 b n=+1 

5 b i12land81 i 676 and 576 
6 a (a—b)(at+b)=bla—b) # a+b=> 

p dr—40 4o 40 
6—x 13—z 

7 a6z—12=3—2) # 6z—12+3(x—2) =0, 
6z—12+3(x—2)=0 % 120 —24=0 

b z(z—6)=3(-3) # =3 V z—6=-3 

    #A 6—z=13—=z 

    

1 1 
8 b No, + is undefined for n = 0, —1 while 

n+1 n2+n 
1 
— is only undefined for n = 0. 
n 

EXERCISE 10D W 

  

1 Hint: Let z =0.9, 10z = 9.9 =9+ and so on. 

1 
3 Hint: u; =4 -2, r= 

! 3-v2 
6 Hint: Let the 2 odd integers be 2a+1 and 2b+1, a, b€ Z. 

7 Hint: Let p=2a+1, ¢q=2b+1, a,beZ. 

REVIEW SET 10A NS 

3 a The boy does not have blue eyes. 

bz is not larger than 4. 

4 a True, by definition. 

b False, the period of f may be g or g, and so on. 

¢ False, f(z+p) = f(z) forallz # f is periodic with 

period p. 

5 Hint: (3a —b)2>0 forall a,beR. 

(2n + )7 
6 b i The LHS is undefined for 6 = , nEZL 

while the RHS is defined for all 6 € R. 

8 a i 9, composite 

iii 91, composite 

¢ Forall k€ Zt, k® + (k+ 1)> will always have factors 

(2k+1) and (k%2 +k+1) and is hence composite. 

REVIEW SET 10B IS 
2 Hint: (va—vb)2=0 

ii 35, composite 

iv 189, composite 

3 a true b Ifsinz is positive then z is acute. ¢ false 

4 a not equivalent b equivalent 

5 Hint: k% +k%2—-k—1=(k?-1)(k+1) 

6 Hint: Divide the triangle into 3 smaller triangles, then find the 

sum of their areas. 

7 Hint: “ab” has value 10a + b, “ba” has value 10b+ a. 

8 (3-5)°=(2-3)"#3-5=2-% 

EXERCISE 11A.1 NESSSSS———— 

1 a Yes. The distance increases by the same amount each time 

interval. 

  

b 4 distance (m) ¢ 3mpers 
600   
  

400   
  

    200 
        time (sec 

120 150 180 

      0 
0 30 60 90 

2 a Yes. The height increases by the same amount each time 

interval. 

b 5 cm per week 

1 5 3 a3 b -2 ¢ -1 43 

EXERCISE 11A.2 H 

1 a No. The graph is not a straight line. 

b i 60 km per hour 

2 a 100 m per hour 

ii 100 km per hour 

b 100 m per hour (downwards) 

  

  

  

  

  

  

  

  

  

  

  

                  

1 2 5 3 a3 b £ ¢ -3 d -2 

4 a i3 ii 2.5 i 2.1 iv 2.01 v 2.001 

b The average rate of change approaches 2. 

EXERCISE 11B IS 

1 a 05ms~! b 2ms! 2 al b 4 

3 a,b c -2 

EXERCISE 11C.1 W 

1 a7 b 7 c 11 d 16 e 0 f5 

2 asb b7 < c 

3 a-2 b7 c -1 

4 As x # 0, we can cancel the zs, to give 

. x . 
lim —=1lm1=1 
z—0 T  =—0 
  

  

  

d 6 e —4 f -8 

  

EXERCISE 11€.2 NS 

1 a iaz—0, flz) > - 

as ¢ — 0T, f(z) — o0 

as z — —oo, f(z) — 0" 

as « — oo, f(z) — 0T 

vertical asymptote = = 0, horizontal asymptote y = 0 

il lim f(z)=0, lim f(z)=0 
T —00 z—00 

b ias z— -3, f(z) > o0 

as « — —3%, f(z) —» —c0 

as ¢ — —oo, f(z) — 3+ 

as x — oo, f(x)— 3~ 

vertical asymptote © = —3, 

horizontal asymptote y = 3



i lim f(z) =3, 
T——00 

lim f(z)=3 
T—00 

. _2- 
as r — 3 

_2+ as ¢ — —3% 

» f(@) = —o0 

s f(@) = o0 
—2- 

3 
2+ as @ — oo, f(z) = —% 

as z — —oo, f(z)— 

vertical asymptote = = 7§, 

horizontal asymptote y = % 

i lim f(z)=-2, lim f(z)=— 
z——00 T—00 wh

o 

ias z— 17, f(z)— oo, 

as ¢z — 1T, f(z) — —oo, 

as @ — —oo, f(x) — —1T 

as x — oo, f(x)— —17 

vertical asymptote x = 1, 

horizontal asymptote y = —1 

lim f(z)=-1 
T—00 

i lim f(z)=-1, 
z——00 

  

il lim (e® — 6) does not exist 
z—00 
y = —6 is a horizontal asymptote of y = e* — 6. 

lim (2e~* — 3) does not exist 
z——00 

b lim (2e7* -3)=-3 

z—00 
~ 0.000454 

< yes ~9.64 x 10721 
~3.72 x 10742 
~ 2.77 x 10—8° 

  

EXERCISE 11D B 

  

(3+h)2—-9 
1 a (3+h)? b ———— =6+h for h#0 B4R Grm_3 Ofh forh# 

c 07 i 6.5 iii 6.1 iv 6.01 d 6 

2 a i2 i 8 

b Gradient of tangent to  f(x) = 2 

1 2 

2 4 

3 6 
4 8 

¢ 2a 

3 asb b 3 ¢ —1 d 4 

EXERCISE 11E W 

1 a f(0)=4 b f(0)=-1 2 f(2)=1 

3 a positive b negative © negative d positive 

b lim ze ® =0 
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4 a0 fl(-2)=-3 
At = = —2, the derivative function is —3, or the 

gradient of the tangent to y = f(z) at the point where 

T =—2 is —3. 

i f/(0)=1 
At x = 0, the derivative function is 1, or the gradient 

of the tangent to y = f(x) at the point where = = 0 
is 1. 

b [ 79 

- 

f1(0) 

5¢C 

EXERCISE 11F HESSS—————— 

1 a fl(z)=1 b fl(z)=0 ¢ f'(z)=322 

2 a fl(zy=2 b fla)=22-3 ¢ f'(z)=—-2z+5 

d d d, 3a P b oy o P2 
dx dx dz 

4 a 12 b 108 

1 
5 a flle)=-= 

x 

b f/(—1) = —1; the tangent at the point where = = —1 
has gradient —1. 

f(3) = —%; the tangent at the point where x = 3 has 

gradient 7%A 

6 a i3 i —1 b fl(z)=—-2z+3 

< FO)=3 f@)=-1 
d 7 a 323 b (~1,2) and (1, —2) 
dz 

8 a fl(z)=4z+2 < AV 

-1, —12 
( ) = 2 % 

() =222+ 20 — 12 
(+1,-12) o 

¥y NS =2 

9 a fllz)=—3z+1 

b f(-2)=2 fB)=-% 
Gradients of tangents are 2 and —%, and 2 X 7% =-1 

tangents are perpendicular. 

10 a If f(z)=2za", 

  

then 
° 

z! 1 f'(z) = na™" L
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REVIEW SET 11A B 

13 
2 a Yes. The height increases by the same amount each time 

interval. 

b 1.6ms™! 

a —1 b -1 <8 

4 a 

  

=4 

ba z—47, y— —o0o, as x — —oo, y— 17, 

as x4>4+,y4>oo, as x~>c>o,y~>1Jr 

vertical asymptote « = 4, horizontal asymptote y = 1 

    

  

¢ lim 2% hm 2ET 

5 

12.02 

12.002 

12.0002 

¢ lim w —12 
h—0 h 

The gradient of the tangent to y = 222 at (3, 18) is 12. 

di 6 f(3)=—1 7 a fiz)=22+2 b d—yzf&t 
z 

8 a d—y:4z b gradient = 16 cz=-3 
dx 

9 a f'(z) =322 -6z 

b f(-1)=9, f'(3)=9 
Gradients of tangents are both 9. 

the tangents are parallel. 

REVIEW SET 11B IS 

1 2 2 a 2°C per hour b 72%°C per hour 

3 a -3 b 3 ¢ -1 

  

b i lim (e*2-3)=-3 
z——00 

i lim (=2 —3) does not exist 
=00 

5 a negative b positive ¢ positive d negative 

  

  

  

  

  

  

  

  

      

6 a,b Ay c 4 

4 
y=a?—2 

2 
7 > 

f'(2) = 
—6 

v                           

7 a f'(z)=4x® -2 
b f/(—2)=-34 

The gradient of f/(x) at the point where @ = —2 is —34. 

d; 8 a L9245 b (—4,-6) 
dx 

9 a i4472m i 4328 m b f/(t) = —9.6t 
¢ i 96ms! i 19.2ms™! 

EXERCISE 12A NS 

    

    

      

    

    

  

1 a 322 b 8z7 ¢ 11210 d 6 

e 6z? f l4z g 15z h 30z° 

i5 i 2z k 2z+1 I 2243 

m 4z +1 n 6z —7 o —4z p 223 — 12z 
q 3z2—8z+6 r 6x2+1 s —1-122% t 2227z 

2 5 3 12 28 
2 a - b - < - d - e = 

6 6 4 36 
f2—z—3 g?z+z—2 h; |—flc—3—m—5 

1 4 16 12 2 
34 ——-— Kk —-—— 1 -= 

! +x2 a3 3zt 5a3 

m 4+ n 2 4 o 2 + 10 — Tz — — L4 = 
422 z2 22 28 

1 1 -1 
3 a — b — < 

2 3/z2 2x+/T 

1 2 3 1 
d 322 — — e ——+—= f2-— 

4z 23z vz 

-3 3 3 = h i4 
$ zve 2x2./T x+2$\/5 

S 4 15 7 3ym 
! 2z\/T a2 2v/z  2z\z 2x\/T 2 

3v7 ~10 9 
m 6r — —— o 2 

* 2 z3\/z +2z2 T 

5Va2 2 2 
P33 wmve 

b o2 W o b W 18 dy _ 3 5 
dz z z3 dz a2 

dy 5 dy > 
d — =127z e — =T7.5z%—2.8z 

dx dz 

d; d; d; f 210 g Pooz1 n ¥ 
dz dz dz 

d; d; 
P Y010 ] Y _gr—u4 

dx dx 

dy dy 3 9 
k —= =622 —6z—5 | ==3/z— — — 

dz v v dz 2VE VT oo 2z\/z 

di d; -3 3 Y1 Yoo ? =2



  

dr | -% 1 4 
¢ — =1t 4473 = — dt 3 + 372 B 

dP 3 5 
d —=—bu"?—15u" =-—= —15/u 

du u? 

16 3 6 a4 b 22 € -2 d -7 e 5 

13 1 f T S 3 h —11 

7 ab=3 c=-4 bb=2 c=-3 

d; 3 d 3 
8 & 44+ —, & is the gradient function of y = 4z — — 

dx 22’ dx T 

from which the gradient of the tangent at any point can be found. 

1 2 
9 a >0 b fl(z)=—=+—F= {e]o>0} @) ==t e 

¢ {z|z>0} 

d f’(1) =2.5 The gradient of the tangent to the curve 
4 

f(x):\/i—fi at =1 is2.5. 

ds ds 
10 a — = 4t +4 ms~!, — s the instantancous rate of 

dt dt 

change in the car’s position at the time ¢. 

ds 
b When t =3, rr = 16 ms—!. This is the instantancous 

rate of change in position at the time ¢ = 3 seconds. 

dc 
11 When z = 1000, e = 7. When 1000 toasters per week are 

23 
being produced, the cost of production is increasing by £7 per 

toaster. 

EXERCISE 125.1 IS 

1 a2 g(f(x) = (22 +7)? b g(f(x) =22 +7 
¢ 9(f(@) = V3 -4z d g(f() =3-4vz 

¢ o(f@) = o f o) = = +3 
2 Note: There may be other answers. 

a g(z) =23 f(z)=3z+10 

b g(z)=2° f(z)=7-22 

1 
< g(x):;, flz) =2z +4 

d g(@) =z, f(z)=2>-3z 
1 

  

¢ g@) == f@)=5c-1 

f g(x):i—g, f(z) =3z — 22 

EXERCISE 12B.2 B 
1 

1 auw? wu=2zr-1 b ui. uw=2z2—3z 

1 1 
¢ 2u 2, u=2-—2a2 du’, u=a®—22 

e 4u=8, u=3-z f 10u~t, u=22-3 

dy dy 2 a L4243 =8z+12 b Y —gri12 
dx dx 

d: d: 
3 a & _gu4z—5) b Y — o5 22)2 

dx dx 

dy _ 1 2" 3 ¢ —=58r—=x 3 -2z Y t@e-a) @20 
d: d: 

d o 120132 e Lo 1805 a)? 
dx dx 
d _2 

f_y:§(213—z2) 3 (622 — 2z) 
dx 
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d; g - 6050 —4)3 
dx 

h W52 - 5e 4 8)4(20 - 5) 
dx 

w=o(-2) (e 2) Y _ ~Z2) (22+= i i (m Z x+x2 

3 4 a-—25 b -18 ¢ -8 d -4 ec-F (0 

5a=3 b=1 6 a=2 b=1 7 a=2 b=3 

d d -2 8 a X _32 —z:%y 3 Hint: Substitute y = x> 
dzx dy 

d; d: d 
b fixd—zzi {chain rule} =1 

EXERCISE 12¢ I 

1 a flle)=2z—1 b fl(z) =4z +2 
1 

f(z) = 2z(z + 1)’1’ + 322z +1) * < 

d fl(z)=2z+2 
1 -1 

e fle)=(2® - 1)% +2%(2® -1) * 
f f'(z) = (z+1)? +2z(z+1) 

d 2 a d—y:2x(2x—l)+2:c2 
T 

dy 3 2 b =420+ 1) +242(2 +1) 
T 

1 1 
¢ 3_9:21(371)2 —32?(3-=) ? 

T 

dy 1% 2 d - =3z (x—3)? +2Va(z—3) 

e :_y = 10z(322 — 1) + 6023(322 — 1) 
X 

dy 1 -3% 213 22 fazax (z — 2?)3 + 3y@(z — 22)2(1 — 2z) 

3 a —48 b 4061 ¢ 13 d 4 

d, 
¢ Domain of d_y is {x | > 0}. Domain of original function 

T 

d; 
is {z |z > 0}. d—y is undefined when z = 0. 

T 

5 z=-1 andzzfg 6 z=1 andzzfé 

— 2 — — 7 — 20 7 az=3 bz=0 8 a=—7 and a= -3¢ 

EXERCISE 12D W 

. T dy  2a%+2 

de (2 —xz)? de — (2c+1)2 

. dy —z?-3 d dy 2z + 1 

dr (22— 3)2 dz  2/z(1 - 2z)? 

. dy 3z%—6x+9 g _2-3 
dx (3w — x2)2 dx 201 - 335)% 

4 —322 — 3 
2 a —— b —— 

B o2 @ 172 
42° — 322 2z — 20 

¢ — d 5 
2z —1) (z—5)2 

. 322 +3 ; —2® — 6 

2/aE - 27 @ +3)% 
3 al b1 ¢ - d -2



576 ~ ANSWERS 

T —2 b fla) = 
2(x—1)2 

s a1 
dx (z+1)2 

di 
batze-—2 ®_ 1 arw—o o 4 

dx dx 

So, the gradient of each tangent is —1 

the tangents are parallel. 

. dy . 
6 b i never {d— is undefined at = —1} 

£ 

il 2<0 and z=1 

7 b iz=-3ad z=2 iizzfé 

8 b iz=-2+V11 iihz=-2 

EXERCISE 12E I 

  

  

  

    

  

1 a fl(z)=4e** b f'(z)=e" ¢ fl(z) = —2e2 

d fliz)=13e? e fll@)=—e ° f fl(z)=2e"" 

z o 
g fl(z) =2e> +3e 7 h f’(a:):T 

1 
. a2 . e’ 
i fl(x) = —2ze™® i f’(m):—I—Q 

I f'(z) = 20e>* I f/(z) = 40e=2® 

m f/(m):2€2m+1 n f’(a:):%ej 

o fl(z) = —dzel =2 p f'(z) = —0.02e~ 002 

2 a e+ ze” b 3z2e % — gl c re 

_ z _ 1l 
d 1o e 2ze3® + 3z2e3® f e 3¢ 

eT /T 

T 94 97 
g 20e~0-5% _ 10ge—0-5% p E£F2+2e 

(e== +1)2 

dy dy e* 3 a L oger(24em)3 b o 
dx (2 +e7) dr  2\e* —1 

Yy _ 3, . —oyF e —z < Efi(e +e ?) % (e® —e ") 

_3 
d fl:—eZ’E(eh-%—Z) 2 

dz 

4 108 b —1 2 a2 ? - ¢ U = 

a {z|z<In6} b i P(n2,2) i —3 

6 k=-9 

7 a d—y:2“ln2 
dx 

c i @:511115 ii d—y:8><10“”ln10 
dx dx 

8 P(0,0) or P(2, ) 9 ¢ S) d — ,0) or , — z 
e? (C)? 

EXERCISE 12F IE———— 

pad 1 A 2 1o 
dez = de  2z+1 de x—a? 

d; 2 d: d: 1-—1 
e B__Z e—y:2x1nx+x ¢ o 

dx z dz dx 2x2 

  

  

  

  

z 
d—y:emlnz+e— h d_y:QInz 
dx T dx T 

-z 
y_ 1 i W _ e g 
dz  2zvInz dx T 

dy _ In(2z) 1 | dy  Inz-2 

de 2z |z dez  z(lnz)? 

dy 4 dy 22 
—= = — =lIn(z2 +1 
dx 1—=z dx n(@ )+ 24+1 

dy 1—-2Inz 

de a3 
1 

2 f'(z) = =, since In(kz) =Ink+Inz and Ink is a constant. 
z 

6 2 

  

  

  

    

  

    

  

  

  

  

  

  

3 
W s b W _3 c My _det 41 
dx dz =« de  xt4a 

dy 1 dy 6 > 
= = e — = In(2 1 
de  x—2 dx 2:15-%—1[11(2Jr I 

dy _ 1—In(4x) dy 1 

de z2 g de @ 

dy__1 id_yi——l 
de  zhhz dz  z(Inz)? 

dy 1 b dy -2 

dr 2z —1 de  2x+3 

dy 1 dy 1 1 Y4 = d ¥ _-_ 
dz +2z dr = 2(2-z) 

dy 1 1 f dy 2 1 

de  xz+3 x-1 de  x 3-z 

9 1 2z / _ b f P F@) = —; f'(z) 1 

2x +2 1 
! — _ 

F'@) 2242z -5 

3 1 1 
! = e — 

f(m)_z r+4 -1 

1[1:3,17:l 8 a=4, b=¢> 9 (=3,1n6) 

EXERCISE 12G NS 

  

  

d; d % —2cos2z b &= cosz—sinz 
dx dx 

d; di 
Y o _3sin3z—cosz d L= cos(z +1) 
dx dx 

d; di 2 _ 95in(3 — 22) t 2L —6sinsa 
dx dx 

Yy _ 1. .= dy 
— = 35cos < + 3sinz h — =4cosz + 2sin2z 
de 2 2 dx 

dy . 
— = —3sin 6z — 20 cos 4z 
dx 

2z —sinz b e®cosz —e"sinz 

cos T 
—e Tsinx + e T cosx d — 

sin 

: s 5 1oz —5sin bz x 90O f —gsing 

) xrcosT —sinz 
cosx — xsinx h ——— 22 

1 sinz 
2z cos(z2 b — sin(v/z ¢ —— =) 3z v PN 
2sinzcosx e —3sinzcos?z



  

  

    

    

—sinx sin 2z + 2 cos z cos 2z 

8cos 2 
—12sin 4z cos? 4z h — C(;S < 

sin” 2z 
1 

cos?x 

d 5 d 1 
i 2o i &= — 3cosx 

dzx cos? 5z dr  cos?z 

dy e dy x 
i == =2e** tanx+ v == =tanz+ 

dz cos?z dz cos?z 
9 -3 b0 

f(z)=0 b f(z) =2(cos®z +sin®z) + 1 

=2(1)+1 

= 3, a constant 

tangent B 

dy ) 
— = —sinz + 4 cos 2z 
dx d 

When z = %, d—z = % 

d 
When z:%", d—Z:% whichis>% v 

EXERCISE 12H I 

  

  

  

  

    

3 
ua — 6 b " — 1@ @) = e 

12 — 6. 1(x) =122 — 6 d f(e) = — 
T 

20 1" -8 f f — 1"(@) 1"@) = Gt 
d? d? L b LV _,_ 30 
dz? dz? zt 

Py _ 9 a Py _ 8 
dz? 4z2\/x dz?2 3 

de 5 
) = 12z* — 36z + 18 

d2y 2 d?y 29 o9y 2 Y _ gesa 
dz? + (1—x)3 s dz? ¢ 

d?y _ —x2e T — 2pe T 42 — 2% 

dz2 3 

d?y _72373352—6176 

da? z3e® 

f(2)=9 b f(2) =10 ¢ fr(2) =12 

T = barx=2o =3 

=0 b f(1)=3 ¢ f/(1)=0 
f(1)=3e—2 b fl(1)=3e—2 ¢ f’(1)=3e 
d2y 
— =2cosx —xsinx 
dz? 

d?y _ 6cos?x 4 4sin2z —2  2cos2z 

de? ozt 3 72 
a2 
2Y _ 9ecosx 

ANSWERS 577 

10 b f"(z) = 3sinxzcos2z + 6 coszsin 2z 11 -3V3 

d?y 1 d?y 1 d?y 2 
— == b —== — = —=(1-1 

? dz? 22 dz? da? m2( nz) 

REVIEW SET 12A B 

13 

14 

15 

16 

17 

  

  

  

  

  

a f'(z) = 1522 b f/(z) =6z° -5 

3 8 
¢ fl(z) =1z + — d fllx) =3+ 

T T 
2 1 

e f/ =3 ff = — F(@)=3VF fle)= 2ot e 

a@:617413 bflzl L 
dx dx z2 

dy 2 
¢ — =2zVr — 24 —— 

dx TV +2\/x—2 
-1 

a fl@)=(a*+1) ? b (0,0) 

B b _ 12 
dz dv  x=+3 

< d—y:312621+2z‘e2z 
dx 

a 10 b —15 j 
1 1 

a 5+3z2 b 4322 + 27 )36z + 32 7) 

¢ 2z(1 — 22)3 — 6z(22 + 1)(1 — z2)? 

(=2,19) and (1, -2) 

a (50055z)lnz+Sm&‘r b coszcos2x — 2sinxsin 2z 
T 

¢ —e Pcosx—e Tsinz 

V3 

’ 24 6x—3 2 af,(z):%—xf b 2 ¢ x=3+6 
er e 

a f'(z) = 8z(z? + 3)3 
1 1 

1 -2 3 sx(z +5) —2(z+5) 
b g(@) =2 — 

6e® — 8xet® 
c h - 

@) = =022 
dy 2 o 

a — =cos®z —sin’x 
dx 

b Hint: cos2z = cos®z — sinz < —% 

s f(B)=1 b f(E)=0 < [F)=2 
Py 5 1 ay 29 _3 _ 1 LY _ 9= z a oz = 2% t+tz—3 b 72 e~ " +ze 

a f'(z)= 2\1/5 cosda — 4/ sin 4z, 

1 
f'(z) = N cosdx — fisirmxf 164/z cos 4z 

L2 i 82 b i fi(fi V) i -2 

a 
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b (1,2) 

¢ The gradient is €® = 1 for both. The tangents to each of 

the curves at this point are the same line. 

REVIEW SET 12B I 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

                              

  

  

1 a fl(z)=62—7 b f/(z) =2z + 10 

3 
< +— d f/(z) = 15z/@ 

z 
dy dy 3 15 

2 a —=6z2—12¢+7 b —= = _— = 
dx v “ dz z2 ozt 

d 5 ¢S 
T 2:3 

3 a f38)=-1T b f(3)=-17 ¢ f'(3)=-6 
dy 1 _1 

b a —=32%2(1-22)2 —2*(1—=22) ? 
dz 

1 _1 
p B (2z-3)(z+1)% - 2(2® - 32)(x+1) ° 

dx z+1 

d; 
5 a Y oeryger b (Le) 

dz 
e” 3 1 

6 a f = b f —_°2 = @) == P =52 
7 a i 3 

< 

gradient = —1 

Tk = 

radient = 5 

fla) =42 
' xT 

8 when z =1, E:O 
dx 

2 _ T(p — 2 9 a d_y: 3z% -3 b dy e (x —2) 

dez 23 —3z dz z3 

d; 
¢ Y& _2e2sing + €27 cos 

dz 

10 a f'(z) = 242% — 24z — 18 b z=—1ord 
11 a 10— 10cos 10z b tanz 

in 5. 
< (50055z)h1(2z)+sm : 

12 % 13 a=4, b=e¢? 
d; 2 1 14 a -1 b Hint: Showtha oY — _20T% 

4 dx (sinz + 2)2 

15 b i:c:% i z<0 

d?y 10 d2y 3 _5 
16 a =¥ ZY —6r+ 3273 

dz? (1-2x)3 dzx? AT 

18 ao=-6+V33 ba=+/3 ¢ a=-3003 

EXERCISE 13A 
1 a fl(z)=2z—4 by=-2z-1 

2 ay=-Tz+l1l b y=1z42 

dy=-2x+6 

cy=-2r—-2 

e y=-5r—9 fy=-5zx—-1 

3 ay=21 and y=—6 

cy=2 

4 a k=-5 

6 a=—-4,b="7 

b y=23 and y=-9 

b y=4z—-15 

7 a=2 b=3% 
5 y=—3z+1 

8 
9 a fl(z)=2z—- — - boo=%v2 

xT 

¢ When x:\/i y =4 and when :c:—\/i y=4. 

tangents are y = 4. 

10 a=4, b=3 

  

1M1 ay=—e2z+3e2 b y=—2z—1%+n3 
&2 

3 c y=der—e dy:?zfg e y=3er — Se 

12 a Domainis {z|z <0 or =z > 2} 

1 1 
b fl(z)=—+ < y:%zf4+ln3 

z -2 

3 
14 —— units? 

4v/e 

15 ay=z b y:7%z+%+-‘§ cy=1 d y=2 

16 Hint: Show that there are no tangents which have gradient = 0. 

17 (—4, —64) 18 (4, —31) 19 (-1, -2) 

20 a y=(2a—1z—a®>+9 

b y =5z, point of contact (3, 15), and 

y = —Tx, point of contact (—3, 21) 

21 a y=(2a+4)z—ad? 
b y =12z — 16, point of contact (4, 32), and 

y = —4, point of contact (—2, —4) 

22 y=>5x—15 and y= -7z —3 

23 a y=ez+e(l—a) 

26 a y+dz= -2 

13 z-intercept %, y-intercept —2e 

b y=ex 

and y— 12z = —18 

b (—1,2) for y+4z=-2 and 

(3,18) for y—12z=—18 
¢ For a tangent to pass through (1, 4), 4 =4a—2a? must 

  

  

  

  

  

  

  

  

  

  

        

have real solutions. But A < 0, so no real solutions. 

d y=ha? AV 

924 

L (3,18) 

y —122 = —18 

/ - 
x 

y+dz=-2                         

  

z 

b 16z + a’y = 24a 

18 . 
d area = fi units?; as a — oo, area — 0 

a 

¢ Ais ($a,0). Bis (0, 2—;*) 
a 

26 =~ 63.43°



27 a Hint: They must have the same y-coordinate at = b and 

the same gradient. 

1 -1 1 
€ a=5 d y=e 2z— 3 

2 28 a y=2asr—as’, y=2atr— at? 

EXERCISE 13B B 

1 aa4+8 =132 ba+Ty=26 ¢ a—3y=—11 
d z+6y =43 e 64z + 4y = —65 frz=2 

2 ay=4-2z by:762z+1128569 

3 ay=z+1 berty=e?+1 

¢ x4+ 2ey=1+2e2 d2x+yfT7' % 

ha=2 b=4 5 (—1,—2) and (2, 1) 
6 =0 7 y=—1dz + 414 

EXERCISE 13C ISSS—————————— 

1 a i x>0 i never b inever i 2<z<3 

¢ izxz<2 iiz=2 d i xzeR i never 

e il1<z<5h iihz<l, z=5 

f i2<z<4, z>4 iihz<0, 0<xz<2 

2 a iz<1l, >3 ih1<z<3 

b f(z)=3z>—1224+9 , 
" ):3(9:—3)(55— 1 <Li—*§$é(‘” 

3 a f(z) =322 - 12z Pl 
=3z(r—4) et L - 1+ 5 

0 4 T 

b increasing for z < 0 and z > 4 

decreasing for 0 < z <4 

4 a increasing for x > 0, decreasing for = < 0 

b decreasing for all =z € R 

¢ increasing for x > 7%, decreasing for = < 7% 

d decreasing for all = # 0 e decreasing for all = > 0 

f increasing for z < 0 and = > 4, 

decreasing for 0 < z < 4 

g increasing for 7\/2 <z < %, 

decreasing for = < —\/Z T > % 

h increasing for —% <z <3, 

decreasing for = < — 3, *>3 

i increasing for = > 0, decreasing for =z < 0 

| increasing for = < 2 — \/3, =2+ \/5, 

decreasing for 2 — V3 < <z<2+ V3 

5 a fl(x)=322—-6z+5 

b A=36-60<0 and a >0 

f'(z) lies entirely above z-axis. 

f'(z) >0 forall @ 

f(x) is increasing for all @. 

¢ AY 
80 / 

60l f(2) 31— 3224 5z + 2 

  

  

  

40 
  

  

  

=Y
 

  

                      
  

  

b 
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-3 0 

—3 and = > 3, 

<0 and 0 <z <3 

increasing for x < 
decreasing for —3 < 

— + — fla) 

-1 1 T 

increasing for —1 <z < 1, 

decreasing for z < —1 and z > 1 

_ L @ 
-1 1 T 

increasing for —1 <z < 1, 

decreasing for z < —1 and = > 1 

_ v - @ 
-1 1 3 T 

increasing for —1 < 

decreasing for = < 

<1l and 1 <z<3, 

—1 and = >3 

10 In this case, f(x) is only defined when z > 0. 

1 

W 
- 

® 
Q
A
 

O
 

o 

f/(z) is only defined when z > 0. 

increasing for all = € R, never decreasing 

increasing for x > —2, 

decreasing for all z € R 

—1, 

1, decreasing for 0 < <1 

never decreasing 

never increasing, 

increasing for = decreasing for < —1 

increasing for x 

e %, decreasing for 0 <z < e 3 

increasing for x V3 and =< —/3, 

decreasing for —V3<ax<—1and —1<axz<1 and 

1<z<V3 
increasing for = 

increasing for x 

AR
 

VAR
 

V
A
R
V
 

< 0, decreasing for x > 0 

increasing for > 0, decreasing for = < 0 

increasing for = > 2, 

decreasing for <1 and 1 <z <2 

increasing for « > 0, decreasing for = < 0 

increasing for z < —1, 
decreasing for —1 <2z <0 and = >0 

EXERCISE 13D B 

a 

b 

A - local max, O - stationary inflection, B - local min. 

+ - - + f'(z) 

-2 0 3 T 

iz 2 and z >3 i —2<z2<3 

- + — + f(@) 
—4 0 5 T 

P is a local maximum, Q is a local minimum. 

f(z) =322 + 12z — 15 =3(z + 5)(z — 1) 

P(—5,60), Q(1, —48) 

fl(z)=2a%-9 + + S 
=(z+3)(z—3) -3 3 T 

increasing for z < —3 and z > 3, 

decreasing for —3 <z < 3 

(—3, 22) is a local maximum, (3, —14) is a local minimum 

As z — oo, f(z) > o0, as & — —oo, f(z)— —oo.
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0 > < = Il i
 | © 4 ~ 

  

  

  

  pn 

  

  

  

        

  

                                    

4 
< = 

—3 T 
(-1,-9) | (1,-9) 

10 local min. ¢ local min. 

v 3,-14) ) 
6 ax= % b local min. if a > 0, local max. if a <0 

a 

7 a (1, l) is a local maximum 

  

  

  

  

  

  

       
      

                        

_ + _ - 

-1 3 * 4 . . . L 
b (72, —2) is a local maximum, (0, 0) is a local minimum 

b increasing for —1 < x < 3, € ) ) ) 
decreasing for 2 < —1 and = >3 ¢ (1, e)isalocal minimum d (—1, e) is a local maximum 

¢ (3,47) is a local maximum, (—1, —17) is a local minimum 8 aa=9 b (—4,113) 

d As x— o0, g(z) — —oco, as z — —oo, g(z) — oco. 3 a=_12. b= _13 

e Ay (3,47) b (-2, 3) isalocal maximum, (2, —29) is a local minimum 

40 10 a a=3, b=6 b local minimum 1M1 az>0 

12 a (%, ) is a local maximum, (37", 71) is a local minimum 

(=) (’7', 1) local maximum 

= . 
I3 T 

(=t =17) =2 vy (@)= —22° + 62> + 18z — 

y —1) local minimum 

5o v f(@) A 
stationary b (0,1), (m 1), and (2, 1) are local maxima, 
inflection f 

(%, 71) and (%, — ) are local minima 

f(z) local maxima 
0,1) (m1) (2m1) 

  

local min. 

    

    

   

local max. 

(=1,4) 

  

local minima 

¢ (0,0), (m, 0), and (27, 0) are local minima, 

      

    

  

10£:f ,On)in (%, 1) and (ST"', 1) are local maxima 

f(z) 

stationary 

inflection    

    

    

   

   

  

   G 0,00 (r,0) (er,0) 
(no stationary points) local minima 

ff(z) 4 

flz)=2"—62>+8z—3 

      

(1,0) 
stationary 

(—2727) inflection 

local min.  



e (%, —\/5) is a local minimum, 

(%", \/5) is a local maximum 

f(@) local maximum 

    (7.v2)       

   
   

  

f(x) =cosz —sinz 

    

(#-v2) 
local minimum 

3 < 

@l
 

"7
| ( 

(5‘” 7$25) is a local minimum, 

) is a local maximum, 

% 

(T" ) is a stationary inflection 

f(z) local maximum 

(v 

  

     
   f(z) =sin2z 4 2 cos          

   

2m T 

am 0) stationary inflection 

-2 

( 
13 P(z) = —92% — 922 + 9z + 2 

14 a greatest value is 63 when x =5, 
least value is —18 when = =2 

b greatest value is 4 when z =3 and = =0, 

least value is —16 when = = —2 

¢ greatest value is 20 when z = 4, 
least value is 12 when = =2 

d greatest value is 0 when z =0, 

least value is —4 when = = 

16 a f'(z) =6cos®z — 5cosz 

¢ local max. at (0.421, 0.272), 

local min. at (5, —1) 

%’, —%) local minimum 

  

(2.72, 0.272), 

        

  

  

  

   

d y 
(0.421,0.272) (2.72,0.272) 

- > 
T 

y=sinz cos 2z 

_ _ 1 17 a= ., b=—3 

. Inz . . Lo 
18 Hint: Show that —— has only one stationary point, which is 

T 
a local maximum. 

19 Hint: Show that f(z) > 1 forall z > 0. 

EXERCISE 13 B 
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b B is a local minimum, D is a local maximum 

  

  

c C 

2 a fl(¢)=3z24+6z-5 b _ L M) 

f'(@)=62+6 —L 
¢ Pz>-1 i< -1 

3 a concave up b concave down ¢ concave down 

d concave up 

4 a ixz=20 iihz<0 z€eR iv never 

b i never i zeR <0 v z>0 

¢ izeR ii never zeR iv never 

d iz>0 ii never never v z>0 

e x>0 ii never never v z>0 

f i —V6<a<0 and z> 

i < —v6 and 0< z < 

i 2< —v/2 and 2> V2 v —V2<z<V2 

5 a z-intercept is 63; ! ~ 10.5 

b no, .. there is no y-intercept 

¢ Domainis {z |z > %} d gradient = 2 

e f — — #'@) = 
concave down. 

<0 forall =z > %, so f(z) is 

  

  

f 

6 axz>0 
1 i (z b f =1 " 

: xT 

0 

f(z) is increasing for = > 0 

1 j - f"(x) 1" - E =t 
0 

f(z) is concave down for = > 0. 

certy=e>+1 

7 a f(x) does not have any x or y-intercepts. 

b as ¢ — o0, f(z) > o0, as x — —oo, f(z) — 0" 

¢ local minimum at (1, e) d iz>0 il <0 

e f(z) 

  

      
   

  

local minimum 

(Le) 

2 horizontal asymptote 

vertical asymptote y=0 

z=0 

f2x+ey=-3 

EXERCISE 13F B 

e [ e 7 [ 76 
  

  

0 
+ 

0
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b B is a local minimum. 

C is a non-stationary inflection point, 
D is a stationary inflection point. 

no points of inflection b stationary inflection at (0, 2) 

¢ non-stationary inflection at (2, 3) 

< 

2 a 

d 

e 

f 

S 

h 

3 a 

b 

   

      

stationary inflection at (0, 2) 

non-stationary inflection at (7 1 %, 11 ;—3) S 

no points of inflection 

stationary inflection at (—2, —3) 

non-stationary inflection at (1, 9) 

non-stationary inflections at (—1, 5) and (1, 5) 

i local minimum at (2, 7%) 

il no points of inflection 

increasing for x > %, decreasing for = < % 

iv concave up for all z € R 

v f(@)     

   

  

   4 z 

i local maximum at (—%, %), 

wl
o ) local minimum 

local minimum at (0, 0) 
i : : : 4 128 i non-stationary inflection at (-3, 5=) 

increasing for @ < —% and z > 0, 

decreasing for 7§ <z<0 

iv concave up for = > 7%, concave down for = < — wl
s 

     

    

  

;i 8 256 local maximum (—5, 57 ) 

   non-stationary 
inflection    

    

  

minimum 

ii no points of inflection i no turning points 

increasing for « > 0, never decreasing 

iv concave down for = > 0, never concave up 

  

i local maximum at (—2, 29) 

local minimum at (4, —79) 

i non-stationary inflection at (1, —25) 

increasing for z < —2 and z > 4 

decreasing for —2 <z <4 

iv concave down for = < 1, concave up forz > 1 

f(z) 

non-stationary 

inflection 

     local maximum 
(—2,29)        
    

  

   

% — 322 — 24z + 1 

(4, —79) local minimum 

e i local minimum at (—1, —3) 

il non-stationary inflection at ( %, 72%) 

stationary inflection at (0, —2) 

iii increasing for z > —1, decreasing for =z < —1 

concave up for x < and = > 0 

iv concave down for 7% <z<0 

2 
3 

  

stationary 
local minimum (—1, =3) ¢ i1 flection 

local minimum at (1, 0) 

no points of inflection 

  

increasing for « > 1, decreasing for = < 1 

iv concave up forall z € R 

f(@)     

  

f@)=(@-1)! 

  

     
   local 

minimum 

(1,0)     

  

local minima at (—+v/2, —1) and (v/2, —1), 

local maximum at (0, 3) 

il non-stationary inflections at (\/g, %) and 

V33 
i increasing for —V2<2<0 and 

iv concave down for 7\/2 <z< \/g 

    
           

concave up for z < — % and x> % 

v . 
non-stationary f(z) non-stationary 

inflection maximum inflection 

     

  

(0.3) VE Wi    

    

442?43 

     (=v2,-1) 
local minimum 

2,-1) 
local minimum



il no points of inflection 

never decreasing 

never concave up 

h i no turning points 

increasing for x > 0, 

iv concave down for = > 0, 

v 

    

z-intercept In V3, y-intercept —2 

f(z) =2e?* >0 forall z€R 

f(z) = 4€2® >0 forall z €R 

as x — —o0, e2* —( e?r —3 — -3t 

® 
& 

A 
o
 

  

  

a f(z): a-intercept In3, y-intercept —2 

g(x): w-intercept ln(%), y-intercept —2 

b f(z): as x — oo, f(z) — oo 

as © — —oo, f(z) — —3+% 
g(z): as = — oo, g(z) — 3~ 

as ¢ — —oo, g(z) — —oo 

¢ . £/ . () 
-— -— 

f(z) is increasing and concave up for all = € R. 

+ g'(z) - g"(x) 
-— > -—» 

g(x) is increasing and concave down for all z € R. 

d (0, —-2) and (Inb5, 2) 

    

(In5,2) 

  
     

  

z-intercept In+/3, y-intercept —2 

b fl(z)=e*+3e >0 forall z€R 
¢ y is concave down below the z-axis and concave up above 

the x-axis. 

y=e"—3e " 

   T (In+/3,0) 
non-stationary 

inflection 

ANSWERS 583 

increasing for x < 0, 7 a local maximum at (0, —,1_), 

2 decreasing for z > 0 

  b non-stationary inflections at <71, 
1 

and 
vV 2em ) 

  (- 7=) 
¢ as =z — oo, f(z)— 0T, 

d 

as x — —oo, f(z)— 0t 

local maximum 4 f(z) —3 f@) = 

An-sta&ionary 

     

   

  

non-stationary 

inflection inflection 

1 
(- X () 

8 a The inflection points coincide with the z-intercepts. 

b non-stationary inflection points at (%, 0) and (37”, 0) 

3m 
2 ¢ i<z 2n o<z iii%SZS 

  

Wosz< 

d 

-1 (m, —1) local minimum 

9 a i Hint: Show that f/(t) = Ae %' (1 — bt). 

i Hint: Show that f'(t) = Abe b*(bt — 2). 

b      

    
    
      

  

non-stationary (2 24 ) 
inflection  \ 7, 5 

f(t) = Ate?t 

10 a y-intercept < 

  

non-stationary / | o 

inflection (;1“14, ?) 

  EXERCISE 13G 

1 a 

  

local min 
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b 10 a 

1 

-+ 

< 

¢ Y local non-stationary 
max inflection y=1) 12 a 

=f(@) < 
-+ 

d 

14 b 

2 a non-stationary 
lfif:): inflection  4Y ¢ 

y=1() stationary 15 a 
inflection 

b 

< 

16 a 

b 

b 17 a 

- > 

non-stationary 
inflection y=f(x) 

min 

3 y b 

A(0,2) 
stationary e 

inflection non-stationary 
inflection 

C(4,-2) 
local min 

REVIEW SET 13A 

1 ay=4dc+2 by=7x—-14 cy=-1 < 

2 
d3z—ey=-1 e y=-z 

e 
1 18 +1 

2 a8x+3y=44 by=—— 
vy Y ez’ 6e2 

3Ip=1qg=-8 4 (—2,19) and (1, —2) 

5 a=064 6 (-2, —25) 

1 a 
— 2, ~ 7 a y-—262aa¢+2€2a+e“ by~ —-1.12z 

8 P(0,7.5), Q(3,0) 9 27 ~ 21.5 units? 

b increasing for d 

—6< <2 bz< -6 and z>2 

a local maximum at (—2, 51), local minimum at (3, —74) 

    
     

< —2 >3 local max. (-2, 51) 

decreasing for 

-2<z<3 

as x — oo, 

f(@) — oo, 

as & — —oo, local min. (3, —74) 

f(@) = —o0 

{z |z # -3} b z-intercept %, y-intercept 7§ 

11 1 
fl(z) = ——= o4 '@ 

(z +3)2 D — 

no stationary points 

13 greatest value is ~ 10.3 when z = 10, 

least value is 6 when = =4 

iz>0 i z<d 
local maximum at (%, %) 

increasing for x < —v2 and z > V2, 

decreasing for “V2<a< V2 

increasing for x > 1, decreasing for =z < 1 

increasing for all = € R 

177 
37 27 

local maximum at (—6, —12), local minimum at (0, 0) 

local maximum at (1, 3), local minimum at ( 

(—m, —1) is a local minimum, (m, 1) is a local maximum 

local maximum (7, 1) 

  

=Y
 

  

local minimum (-, —1) 

(=m 1), (0,1), and (m, 1) are local maxima, 

(—=%.0) and (%, 0) arc local minima 

*l/ 

(-m1) — 
local maxima 

    

, 
5 3 3 s 

(=<, 5) and (=%, 35) are local maxima, 

(=%, 1) and (%, —3) arc local minima 

local maxima Y 
_sm §) (-Z é) 

622 672 

local minimum (-3, 

  

local minimum (%, —3)



18 a fl(¢)=622—-6z+1, b () 

f'(x) =12z -6 

car< 3 d (3, -12) 

s
 19 a concave up for = > %, concave down for = < 

< b concave up for =z < —3, 

concave down for —3 <z <0 and =z >0 

¢ concave up for —4 <z <2 and = >0, 

concave down for z < —4 and —2<z<0 

20 a x>0 
1 b =1+ @) == 
x & 

L e 
6 T 6 T 

  

_ 5m 1im 21 a T = 3F or =¢ 

< / 4 _ L[ @) 
5T um z 

0 ° S oo 

d 10<z<3 and YE<aon 
i 11 
i <o BE 

22 a (0,In5) isa local minimum 

b (7\/5, In10) and (\/5, In10) are non-stationary 

inflections 

¢ increasing for @ > 0, decreasing for = < 0 

d concave up for V<2< V5 

concave down for # < —v/5 and = > V5 

  

In(z 
  

  

  

                

  

  

—x 23 az=73 

b (0.999, 2.03) and (2.14, 2.03) are non-stationary 
inflections. 

24 
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25 local 

        

  

— g 
non-sta\ltionary y=Jx) 

inflection 

local 
minimum 

REVIEW SET 13B IS 

1 a y=3lz-—43 b z+ 128y =41 

_ 3v3 _3 1 cy=3z+2= -2 dy=3z+35 

2 az=1 bz=0 3 a=-14, b=21 

5 a f(3)=2 f'(3)=-1 b f(z)=22—-Tz+14 

6 aa=2 b y=3z—1 ¢ (-4, —13) 

7 (3.31) 

8 a2c+3y=2+2V3 b oa+2V2y=73%+2 

9y=3z+5 10 a=%§ b=-3 

1M a —-1<z<0Oand >4 b az<—-1and 0<z<4 

12 aa=-9 
b local maximum at (—1, 55), local minimum at (3, 23) 

13 a z-intercepts 0 and 2, y-intercept 0 

b local maximum at (%, % , local minimum at (2, 0) 

< increasing for x < % and z > 2, 

decreasing for % <z<2 

d As ¢ — 00, y—>00, a T — —00, Y — —00. 
  

e Ay ly =[3 - 40 + 4z 
  

    

  

  

  

                        

  

  

14 a local minimum at (0, 1) b as z — oo, f(z) — o0 

¢ frim) = e i I 

f(z) is concave up for all z € R. 

y=e'—x 

15 a 

  

16 (1—a, e*1) is a local maximum 17 a=2, b=3 

18 a < —-196 and 0.238 <z < 3.22 

b —1.96 < x<0.238 and x> 3.22 

¢ —-1<z2<?2 dz<—-1 and z>2
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19 

20 

21 

22 

23 

a0<z<Z and EZE <2< 2n 

a -1 baz#1 

¢ f/(z)<0 for <1 and 1<z <2 

    

      

ANSWERS 

stationary inflection at (0, 9), 24 non-stationary 
. . . 3 6 inflection 

non-stationary inflection at (%, ?—2 local maximum 

non-stationary inflections at (—1, 8) and (%, %) stationary 
inflection 

  

z 45 y=f(x) 
, sinz . . 37 

r) = ————, increasing for == < z < 27, o =res nelor w =S - % decreasing for 0 <z < 5 | 

25 ay=2r-3 

¢ f/(x) >0 forall z € R 

f(z) is increasing 

  

  

  

      

f/(z) = 43 — 1222 _ _ + [ d $<z<2 
< = 

0 3 T 

() — 2 _ _ (g f(z) =122 24x -t + i("”) 

0 2 T 

(3, —20) is a local minimum EXERCISE 14A B 
(0, 7) is a stationary inflection aP 
(2, —9) is a non-stationary inflection 1 a $118000 b = 4t — 12 thousand dollars per year 

  

  

  

iz>3 i <3 il <0 and = > 2 ¢ 20, which means that in 8 years from now, profits will be 

ivo<z<?2 increasing at a rate of $20 000 per year. 

Af(z) 2 a 190 m? per day b 180 m? per day 
o flz) =2t — e+ 7 . - 
210, 7) stationary inflection 3 a i Q(0)=100 il Q(25)=50 i Q(100)=0 
  

decreasing by 1 unit per year   

  

  

  

  

                        
* = ii decreasing by 715 units per year 

5 
; 2,-9) ¢ Q(t)=———=<0 forall t>0 

| non-stationar; Vi 
inflection 4 a 05m 

v 8. =20)llocal minimum b i ~158m il ~21.7m il ~249m 
a local maxima at (0, 1), (m, 1), and (2m, 1), ¢ t=0: 6.9 mperyear, t=>5 1.725m per year, 

local minima at (%5, 0) and (377", 0) t =10: ~ 0.767 m per year 

b non-stationary inflections at (%, 1), (2, 1), d 4 1725 >0 forall t>0 
5w 1y g (I 1 dt — (t+5)? 
3 3) and (G 5 

The tree will continue to grow forever. 
local maxima 

2 5 C'(z) = 6 + 8.4z 93 dollars per pair 
y=cos’z 

/ l(w’ 1)\‘ b (C’(220) ~ $7.67, this estimates the cost of making the (0,1) (27, 1)    221st pair of jeans if 220 pairs are currently being made. 

¢ ((221)—C(220) ~ $7.66, this is the actual cost of making 

the 221st pair of jeans. The answer in b is a very good 

cstimate. 

i 4500 euros ii 4000 euros 

b i decreasing at ~ 210.22 euros per kmh—1! 

i increasing at &~ 11.31 euros per kmh—?! 

¢ ~79.4 kmh™! 
and f'(z) >0 for z>2 

f’(x) >0 for £ >1, f’(z) <0 for z <1 7 a 
The function is decreasing for all defined values of z < 2, 

and increasing for all = > 2. The curve is concave down 

for < 1 and concave up for > 1. 

e tangentis y = e? 

   b t =0 when the tap was first opened



d’V 125 
—=—>0 
dt? 8 

This shows that the rate of change of V' is constantly 

increasing, so the outflow is increasing at a constant rate. 

8 a The near part of the lake is 2 km from the sea, the furthest 

part is 3 km. 

dy 3,2 3 b et g —x+ 3 

d; 
When @ = 4, 2% — 0.175, the height of the hill is 

dz 

increasing as the gradient is positive. 

d 
When z = 1%, d_y = —0.225, the height of the hill is 

T 

decreasing as the gradient is negative. 

¢ ~ 2.55 km from the sea, ~ 63.1 m deep 

— 1 ~ 9 a k=z3n2~0.0139 

b i 20 grams il ~14.3 grams iii ~ 1.95 grams 

¢ ~ 216 hours or ~ 9 days 

d i ~—0.0693 gh™! il ~—2.64x10"7 gh™! 

dW 
e Hint: You should find —— = — L In2 x 20e~50 122 dt 50 

_ 1 19) ~ 10 a k=2%m(4)~0123 b 100°C 
¢ c=—k~—0.123 

i decreasing at ~ 11.7°C min—! 

decreasing at ~ 3.42°C min—! 

  

decreasing at ~ 0.998°C min~! 

11 a ~439cm b ~ 10.4 years 

i growing at ~ 5.45 cm per year 

ii growing at ~ 1.88 cm per year 

12 a When t =0, A =0 litres 

In 2 
b i k=— (~0231 i 3 ¢ ) 

ii &~ 0.728 litres of alcohol produced per hour 

13 2L cm?2 per radian 

14 a | =+/800—800cosf cm 

i 0volts i 340 volts 

b i —340007 volts per second 

16 a 2000 bees b ~37.8% 

2595 

el.73t (1 + 0‘56—1.73t)2 

B(t) is increasing over time. 

e = 0.0806 bees per month 

B(1) 

b 10 cm per radian 

ii 0 volts per second 

¢ yes, 3000 bees 

d B'(t)= >0 forall t>0 

  

    

    

  

  

  

  

t (months) 
>       1 5                   

EXERCISE 14B B 

1 250 items per day 2 10 blankets per day 

3 b 15mx30m 

4 b Lpyin ~28.3m, when z ~ 7.07 
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< + 

141m 

+ 
7.07m 

5 a Hint: V=200=2zxzXh 

. 100 L 
b Hint: Show h = —5 and substitute into the surface arca 

T 

equation. 

¢ Amin = 213 cm?, d _——— 
when x ~ 4.22 “ 5.62 cm 

843 cm 4.22cm 

6 a Hint: Recall that Vigjinger = 7r2h  and that 

1L = 1000 cm?. 

b Hint: Recall that SAcyinger = 2772 + 27rh. 

< 5.42 cm 

== 

10.84 cm 

6 cm x 6 cm 

0<2< 20637 
1=100, z=10~318 A= 20906370 m? 

9 ay=30—-¢z b A(z) = z(30 — z) cm? 

A'(z) =30 -2z d =15 15cm x 15 cm 

10 a area = 42v25 — 22 cm? b 5v2cm x 5v/2 cm 

12 c(% e—%) 

91, A=~ 237 cm? 

, area ~ 130 cm? 

o
 

o 
O
 

11 20 kettles 

13 b 

14 ¢ 

15 a E'(t) = 750e~1-5(1 — 1.5¢) 
b 40 minutes after the injection 

16 3% km 17 after ~ 13.8 weeks 

18 a Hint: Use the cosine rule. b =~ 3550 

¢ ~ 5:36 pm 

19 co0=73% d dar 
+ - a0 

§ e 
0 2 

e i Row from P to Q at an angle of £ to the diameter of the 

lake, then walk from Q to R. 

ii Walk from P to R. 

20 a X is between A and C. 

¢ = & 2.67 This is the distance in km from A to X which 

minimises the time taken to get from B to C. 

21 b =337Tm 

REVIEW SET 14A B 

1 a 60cm b 1 ~4.24 years ii &~ 201 years 

¢ i 16 cm per year 

a £20000 b £146.53 per year 

3 a =~ $4930.25 

b i decreasing at ~ $1.39 per kmh~! 

il ~ 1.95 cm per year
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ii increasing at ~ $2.83 per kmh—! 
4 a 

¢ ~79.4kmh~1t 0.16000 | 0.36000 

4 b C(V3,6) 0.20250 | 0.30250 
s 1 s 0.24010 | 0.26010 

5 b A=200r—2z° - g7z < 0.24503 | 0.25503 

0.24900 | 0.25100 

0.24950 | 0.25050 

28.0m 0.24995 | 0.25005 

56.0 m 

1 0.40000 | 0.60000 
= z>0 0.45000 [ 0.55000 

0.49000 | 0.51000 

6 ay= 

¢ baseis /2 ~ 1.26 m square, height is &~ 0.630 m 
0.49500 | 0.50500 

dD 
7 a — = —3.44765sin(0.507t), this tells us the rate at which 0.49900  0.50100 

dt 0.49950 | 0.50050 

the depth of water is increasing or decreasing ¢ hours after 0.49995 | 0.50005 

midnight. 

. dD 
b ~515m ¢ rising, when ¢ =8, E~2473>0 054974 | 074972 

d midnight and ~ 12:24 pm, maximum depth of 16.1 m 0.61051 | 0.71051 
0.65610 | 0.676 10 

REVIEW SET 14B I 0.66146 | 0.67146 

1 a C'(z) = 2.8052~01 4 1.42~05 curos per item 0.66565 | 0.66765 

b C’(1000) =~ €1.04, this estimates the cost of making the 0.66616 | 0.66716 

1001st item each day. 0.66662 | 0.66672 

¢ C(1001) — C(1000) ~ €1.04, this is the actual cost of 

making the 1001st item each day. The answer in b is a very 

good estimate. 0.61867 | 0.81867 
_t 0.68740 | 0.78740 

2 a P(0)=20000 b P/(t)= M 0.73851 | 0.75851 
(1+2e7%)2 0.74441 | 0.75441 

¢ Hint: Use the fact that e~ is never negative. 0.74893 | 0.75093 
0.74947 | 0.75047 P(t) is increasing for all ¢ > 0. 
0.74995 | 0.75005     7500e" % (2% — 1) 

  

     
d P(t) = 7 1 a1 a2 3 1 

(1+2e71%)3 b iz i 3 i % v < area:a+1 

¢ 3750 per year when ¢ = 4ln_2 years 5 a Rational bounds for 7 b n = 10000 
f as t— oo, P(t)— 60000 2.9045 < w < 3.3045 
g 3.0983 < 7 < 3.1783 

3.1204 < 7w < 3.1604 

3.1312 < 7 < 3.1512 

3.1396 < 7 < 3.1436 

3.1414 < 7 < 3.1418 

EXERCISE 15B NS 
3 a A=2427(1 — cosf) cm? 1 a 

b 12127 &~ 538 cm? per radian 

4 6 cm from each end 5 x-coordinate of P is In a. 

6 z~211 7 0 % metres 

EXERCISE 15A W 

1 a i 0.4 units? i 0.6 units? b 0.5 units? 

2 a ~0.653 units? b~ 0.737 units? 

Ay, and Ay converge to —Z b   



2 a A=< E +a2, AU_—Z T+a2, 

where z; = — 

  

-3 

b lower &~ 1.2493, 

¢ lower ~ 1.2493, 

upper ~ 1.2506 

upper ~ 1.2506 

3 22 

d / e ° dr~2.4999, V27 ~ 2.5066 

  

3 

4 a 18 b 45 ¢ 2w 5 b io0 ii 22 

EXERCISE 15C NSS—————————— 

. a? . Lot ool 
1 a i — i — i — v —— 

2 3 6 T 

1 4 5 2 . 8 
Voo i 225 il $2° 0 il 227 

Zntl 
b The antiderivative of ™ is (n# —1). 

n+1 

ie 
2 a i et i et i 2¢7 iv 100e%-01® 

v dem vi 3e? T 
S o1 . 

b The antiderivative of eF* is —eF®, where k # 0 is a 

constant. 

d 
3 a —(z® + 272) =322 4 2z 

dx 

the antiderivative of 6x2 4 4z is 23 + 22, 

d 

A 

the antiderivative of /z is 2 

  

. d(l) , -3 1 —(—=)=-%z 2 =— 
dz \\z 2 2z\/T 

  the antiderivative of ! is 2 vativi ——. 

/T vz 

EXERCISE 15D NS 
d 

1 a —(z?)=22 7 &) 

the antiderivative of 2z is z2. 

b 8 units? 
3 

2 a 2z? b % units? 

the answers are the same. 
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3 a0 4units? il 162 units? i 204 units? 

3 2 3 

b/ac’dac: :c:‘dx-%—/ 2% da 
0 0 2 

: 4/2 -2 
4 a 3% units? b 8% its < units 

¢ 3 
d 2 units? 

9 2 6 =F units 

1 

7 ¢ i (—2?)de = —%, the arca between y = —x? and 
0 

the z-axis from =0 to z=1 is % units. 

1 

i / (a? —z)dz = —%, the area between y = 2 — 

0 

and the z-axis from z =0 to z =1 is % units2. 

] 

iii / 3z de = —6, 

J—2 

z-axis from z = —2 to = =0 is 6 units>. 

the arca between y = 3z and the 

REVIEW SET 15A IS 

    
   

2 

1 aA=1i p=2 b (4-2%) do~ 2t 
0 

2 a Y 
1 y=sinz 

T 
2 

b lower rectangles upper rectangles 

Yy Yy 
y=sinz y=smz     

  

  

s 
3 

(1 +V3) 

12 

z 

< sinz de < M 
o 12 

5 
or 0.715 < / sinz dr < 1.24 

0 

5 1 —-1z 
3 a b —— ¢ —2 ° d sinz 

5 2z 

4 a 27 b 4 

5 a i % units il 2 units? i 22 units? 

2 1 2 

b / z? dac:/ :chx+/ 22 da 
0 0 1
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REVIEW SET 15B B 

1 a 

  

/ekzdz:%ek’Jrc, k#0 

lower rectangles upper rectangles 

Y 4 d . 
4 3 a — (sinz) = cosz 

dx 
3 

9 /cosac dr =sinz + ¢ 
L . 

d . 
- b — (cosz) = —sinz 

     
    

02040608 1 = 

oy sinz dr = —cosx + ¢ 
dx 

Jo 

  

  

  

  

1+ a2 
d 

~ 3.1416 4 o (2% +2) =32% 420 
T 

/(3z2+2z) dz =2 +2%+c¢ 

2 al0 bZ , 
d 5 — (3:c4 — 29:2) =122% — 4z 

3 a —(a®—2x)=322-2 dz 
dx 

the antiderivative of 322 — 2 is % — 2z, /(39:3 —xz)dx = %x‘l — %mQ +c 

d (3\_a 3 _a 
b@(r )=§w =3V 6 a f@)+g() 

the antiderivative of {/z is 3z7. 7 a di(sin?,z) = 3cos3z 
X 

4 a3 b 5 a 18units> b 18 units? 
/cos3zdz: %sin3z+c 

EXERCISE 16A NS 

d ; d . 
1 a = (x7) = 728 b = (cos (% 7z)) = sin (% 7z) 

/zSdz:%z7+c /Sin(%fz)dz:cos(%—z)fl»
c 

d (3 3.3 _ 3 d ( Bet1) _ o 3et1 b E<z):§z -3F ¢ () =z 

3 
/\/Edm =227 +e /63“’1 dr = 3% 1 ¢ 

oA A 1,8 d i(\/Bzfl):é(Bzfl)_%:; 
7 \F =73" dz 2 2v/5z — 1 

_3 1 1 2 
z 2de=-2¢ > +c fidflc:g\/5x—l+c 

d 
d di (@*1) = (n + D" e —(@z+n')=s8@z+1) 

T 

n+1 
/m"dw:z+l+c, n#-1 /(2z+1)3dz:§(2z+1)4+c 

n 

1 -1 1 
2 a i(e“):é&e4010 8 a — b —=- 

dx T - 

e4md1:ie4z+c < ldz: nz+e, z>0 
g In(—z)+¢, <0



EXERCISE 16B B 

1 1 
a3 z3+%z2721+c b z:37%z2+z+c 

2+ 423 —3z4+c¢ d Bl
= 
o
 

| 
e
 22 + %13 + %z4+c 

o 
3 

71137512+2z+c f %I:3+ln\z|+c 8 
e
 2 

23 62 +c h %ln|x\+—+c 
x 

v
l
 

W
l
 
=
 

8 ol
 

-9z +c i 7617%+%z%+c 

2e’—%:c2+c b4ln\:c|+%a:3—e’”+c 

531+%z3+c 

  

—3cosz — 2z + ¢ b 222 —2sinz + ¢ 
7 

—cosz —2sinz +e* +c d %xi +10cosz + ¢ 

1,3 1.2 4.3 5%° — ga~ +sinz+c f cosz+ 322 +c¢ 

1 
y=6zx+c b y:§m3+c cy=—-——+c 

x 
2 

y=3z> +c¢ e y=1zt—dz+c 

y=a*+a3+ec g y=2z—In|z|+c 

y= —cosx+ 2sinz + ¢ iy:23’”—5x+%x2+c 

1.4 1.5 3 '431 4 1.3 1.4 gzt — sz’ + 32 +c b7;+§z*7fiz +c 

3 

5, 1.4 2% 2+ 52t - 327 fc 

1 
%x3+2x2+x+c b 39: +2x——+c 

2 
—7—8\/5+c d ;x\/_—Q\/_-%—c 

122 -2z +In|z|+c fIn|z|— 422 +c 

4 
——+4dln|z|+z+c h dattad+ 322 4+a+c 

x 

éxs‘ 2t 4223 222tz +c 
2 

2 €T 
£ —_ k — -4 101 3 \/E+\/E+C 3 z+10In|z|+c 

5 
%127217—#»0 

x 

flz) =2 —22% + 2 a:3+c 

f(2) = 32yT — 4T +c ¢ f@) =a+Dte 
3 

%zz +%smz+c b 2e® +4cosz + ¢ 

3sinx +cosw + ¢ 

L 3 3 % %z57z27—+c b %z 7§z +4z° +c 
T 

18 % 12 % 2 % 
srt —Frt 37 tc 

EXERCISE 16C B 

1 a flz)=22—z+3 b f(z)=a+22-7 

¢ fle)=220+2/2-3 d flx)=3z2-a/z+ 4 

e f(z)= —:c2—2x+ f flz)=In|z|+1 

22 223 o, 3 
2y:7—T 5 3 y=x—e"+2° -3 

4 a f(x):% 3 —4sinz +3 

b f(z) = 2sinz +3cosz — 2v/2 

< f(z):%z%+2<:oszf4 
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d f(x) =e” +3sinz —e™ 

5 fla)=-a?+z+3 6 f(z)=3z®+1 

7 a f@)=32*+i2+a+1 

b f(a:):4ac§ ot 4z 45 

¢ f(g) =—cosz—x+4 d f(x):%xS—l_—f:c+5 

8 flz)=3e"—z+1 

EXERCISE 16D N 

  

1 
1 a f@2z+5)%+ec b ————+ 

5( ) 2(3 — 2z) 
—2 

¢ — d 254z —3)8 3(2x_1)3+c 354z —3)° +¢ 

e 2Ba—4)% +c f —4yT—Bz+c 

g —3(1-x)°+c h —2/3—4dz+c 
. 5 
Pt 

63z 22  © 

2 y=1(2c-7)3 12 3 (-8, -19) 

4 a l(2z71)3+c b %(4175)34»0 

¢ —L(1-3x)t+c d —L@-52)%+c 

e 7§(57z)%+c f%(7z+1)5+c 

5 _ 1.2 5 y=gz°— 7177 

6 a 7%cos3z+c b 7%sin(74z)+z+c ¢ 6sing +ec 

d 7%c052z+e’m+c e 7cos(2z+%)+c 

f3sm(K7’z)+c 9 %sin?zfécos?zi»c 

h 7§c053z+%sin4z+c i 11651n81+3cosz+c 

7 a2t 5e¥ te b e 24 ¢ 

< :1373’”+c d% T2 -5 62’”+c 

e ;e T —de " +4x+c 

ge T — 10e” — 25e”* + ¢ 

9p:7%, f(z):%cos%+% 11 f(z)=—e 2% +4 

12 y:%zgfée’“#»%e"lf% 

13 /(sinz+cosz)2dz =z — %cos?z+c 

2 14 a sin x:%—%cosZfl: cos $:%+%C0822} 

b i 2m——sm?x+c ii %:ch%sin?erc 

15 a % +%sm2x+c b %x—%sin2x+2x2+c 

< % +ésin4z+c d %z+ésm6z+c 

e %x+§s1n8x+c I%x+2smx+%sin2x+c 

] Z*%SlflZ(L“FCDS(E#»C 

h 17:1&-%—6(;0555—Qsm29:+c 

16 a 6ln|jz+4|+c b %ln\2x—1|+c 

¢ —3ln|l—z|+c d 7gln|173z\+c 

e z—a?+4ln|z—3|+c f4x+%ln\5x72|+c 

g —e®—2In|2z+1|+c¢ 

h Injz+2|+2In|z—3|+c¢
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i 5lnjz—6|— gln\3zfl|+c 

17 Both are correct. Recall that: 

d d 1 
— (In(Az)) = — (InA+Inz)=—, A x>0 
dx dx T 

  

T+ 2 

19 f(z)=22+2In|l1—a|+2—2In2 

EXERCISE 16 NN 
d 

3z —1 
18 / L de =3z —Tln|z+2[+c 

1 = ((12 - z)s) =322 —z)%(2c 1) 

/(29: —1)(2® — ) do = %(acz -z +c 

2 % (sin(:cZ)) = 2z cos(z?) 

/zcos(zz) dr = %sin(zz) +ec 

d 2 —3 
3 — (In(5 -3 %) = ——— 

da:(n( z+z)) 5— 3z + 2 

" 4z -6 5 
'/mdx:21n|5—3x+x +c 

s k@ ee b et o bentete 
d sin(z? —3) +¢ 

5 a %(2+z4)4+c b 2VzZ +3+¢ 

1 10,3 5 
¢ sEsopp e dsE@rmEle 
e — 1 f . + 

c —+e¢ 8(1— 22)4 2(z2 + 4z — 3) 

6 a el=2 i b e’ +c ¢ 2V 4 

7 aln|z2+1|+c t’*%1“|2*352|+C 

< ln|x2—31|+c 

3 

—é(3—m3)3+c b —é(l—m2)§+c 
2 

¢ —lel=" 4 ¢ d 5 %(ln z)t 4+ ¢ 

r—x2 
e —e7" 4ec f —éln|2373x|+c 

—Lcosbx+c 9 a lsindz+te b -1 
8 

< 72(cosz)% +ec d 

e %(sinz)% +c 

—In|cosz|+c 

f —(2+4sinz) 1+c 

g In|l—cosz|+ec h %ln\sin?x—?)\-%—c 

i 75005(12)4»0 

10 a —ésin3x+sinx+c b %sin42x+c 

REVIEW SET 16A N 
d P 

1 — (934—9:2) =4a® — 2z 
dx 

/(29:3 —z)dx = %x‘l — %:c2 +c 

d 
2 = (sin(% - 2x)) = —2cos(§ — 2z) 

/cos(% —2z) dx = —%sin(% —2z)+ ¢ 

1 

12 

13 

14 

15 

a %mfi+;+c b xQ—%x§+c 

¢ 4z/Z + 107 + ¢ 

a 8z +e b§+m2+c 67#+;+c 

a 7%z5+213+c b %z2fz+l+c 
) x 

< %z37%z§+lz2+c d 4e® —3In|z|+c 

e —1cos(4w —5)+c f—Let8e 4 ¢ 

a y=-3e%—2cos(§ —x)+ec 

b y:%51n4x7%x3+c 

flz)=a3 222 2 +2 8 y=—222+3z+2 

f@)=3e* + 3 
a %x2—71n|x\+c b %eh’f’—%ln\Sx—IH—c 

< —1—12(4 —3z)* + %cos(—Z:c) +ec 

a =62, f(z):?fisin3zfl 

%x+2005:c— isin2x+c 

i( x2,4):L 
dx 2 4 

/\/%dx:\/x274+c 

7%cos(12 +E)+e 

a %ln|:c2+4x|+c b er”1ic 

1L inl0 1 ¢ gsin'Pz+c d —5In|cos2z|+c 

REVIEW SET 16B IS 

4 (6e=2) = _19e-2" 2 (67) 

/672@ dr = 7%(-37% +c 

  

  

d 2 L (In(2z+1)) = o (@) = o 
1 1 /21+1dz:§1n\2z+1|+c 

2 3 5 23 
axz+—+c b 3xP—-122°+16z+c ¢ 49:—T+c 

x 

4 
a %zs +3z4+¢c b z3—2z2+c ¢ 91+6z2+§13+c 

f(x):§x3—3x2+2:c+2% 

1 
ay=1a5-2a3424+c b y=400z—40z° +c 

a dat— S22 4T 4c b 222 —In|z|+c 

< zfz3+%z‘ 7%z7+c d —2e *"+3zx+c 

e 2sin2z+c |9x+3e2’”’1+%e4’”’2+c 

flz)=2In|z|-z+e+2—1n4 
3 vt Byt 2 

flz)=—-2y/4—-3x+38 

/(sinx —cosx)? de ==z + %cos2x+c 

a —%1n|3—2x\+c b %ln\5x+l\+c



13 % (32 +2)%) = 3(32% +2)*(62 +1) 

/(3z2 +z)2(6z + 1) dz = %(3z2 +z) +e 

14 a 2vVz2—-5+c b 
3cosdz 

d 7cosx+%c053m+c 

+c ¢ —2e7%° f¢   

15 a %ln|m279‘+c b ln|cos(sin’1 (%))‘+c 

EXERCISE 17A B 

  

2 ai b I - d1 

1 1 1 2 3 a 4 b 63 € 27 4 a3 b 3 c 1 

1 2 1 5 2 5 a3 b g c 18 d 13 e 16g f 63 

g 2 h 204 i 21+41In4 
— 4 1 2 6 m=—lorg 7 a68f b2 ¢ 42 

8 ae—1 b 23 —11 ¢ 3(ef—1) 

1 3 
de—1 e 2 ———— =41 

¢ 2 2e4 252+e+ 

1 1 1 1 9 a2 b 3 <3 d 3 e 1 f 7z 

1 1 10 2+ 2 1Mz 12 —¢ 13 In4 

4 3 14 a —In3 b In3 ¢ 42 d 2In(L) 

15 m=-5 17 a ~130 b ~149 ¢ ~-0.189 
7 6 9 

19 a f(z) dz b f(z) dz < / g(z) dz 
2 4 1 

20 a -5 b 4 

21 a4 b0 ¢ -8 dk=-2 22 0 

23 a i@ -1)t+4c b & 
6 

1,222 e’ —1 
24 a —ze™°% +c b o 

25 a —fl|2-a%|+c b in(2) 
1 

26 a ————— b L 
2(9524-2)+C 12 

27 a %sin:‘zfl»c b % 

EXERCISE 17B 

1 a 6 units? b 6 units? 

2 a 30 units? b 4% units? ¢ 134 units? 

3 a 5% units? b 12% units? 

1 units2 3 units2 1 units2 4 a3 units b 634 units € 27 units 

5 a A(-2,0), B(3,0) b 203 units? 

6 a 4% units? b 9 units? ¢ 4+/3 units? 

8 1 unit? 9 % units? 

10 a region A 

b A: L units?, B: 1— —= & 0.293 units2 2 
region A is larger. 

V2 

11 a 

12 a 

d 

13 b 

14 a 
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z b —In|cosz|+c ¢ In+/2 units? 

% units? b (e — 1) units? < 4% units? 

2 
18 units? e (26 - —) units? 

€ 

in2 
(L) units? (/2 1.56 units?) 
1+ cos2 

2 
b= (%)% ~ 13104 ba=+3 

0.4 _ 
=3¢ ~1.7377 d k=2V5 

EXERCISE 17C N 

1 a 

< 

2 a 

3 a 

b 

b (1+e~2) units? 

1 units? d 27 units 

L ynits? 43 units 

2 units? 

¢ 8 units? 40% units? b 8 units? 

5 
/ f(z)dx = — (area between =3 and x = 5) 

3 
3 5 7 

/ f(z)dz — / f(z)dz +/ f(z)dx 
1 3 5 

4 Region B is larger. 
4 

/ f(x) dz = area of region A + (—area of region B) 
-2 {region B is below the z-axis} 

= area of region A — area of region B 

=6 

area of region B > area of region A 

5 k=2or6 

b 

7 a 

2 

      y=2sinz+1 

(2\/__ %‘) units?> (= 1.37 units?) 

33% em? b ~66.7L 8 a Lsin(z?) +e 
3 

EXERCISE 17D B 

1 a 

    
b (1, —2) and 

(3.0) 
1 units2 ¢ 13 units 

units? 3 %units2 

y=2x 

enclosed area = é units?
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5 a A(3.9), B2 1) 
6 k~2.3489 

7 

1031 cars 

i &~ 1.65 L per minute il &~ 1.09 L per minute 

b The rate of water leaking into the kayak is greater than the 

rate of water being bailed from the kayak after 2 minutes. So, 

the amount of water in the kayak is increasing after 2 minutes. 
y=sinz 

  

enclosed area = (v/2 — 1) units? 

    

3 

/ Ri(t)dt ~ 3.72 
0 

About 3.72 litres of water have leaked into the kayak in 

the first 3 minutes. 

5 

/ Ra(t)dt = 5.27 
2 

About 5.27 litres of water have been bailed out of the 

  

  

  

  

  

  

  

                    

8 a Cpis y=4sinz, Cpis y=sinz b 6 units2 kayak from ¢ = 2 minutes to ¢ = 5 minutes. 

8 
9 a Cris y=cos?z, Czis y=cos2 118 y C';‘)rs x, 27rls Y czi T i / [Rl(t) _ Rz(t)] dt ~ 5.09 

b A0, 1), B(F,0). C(%,0), D(F, 0), E(m. 1) 0 
10 a . There are about 5.09 litres of water in the kayak 

sl 8 minutes after striking the rock. 

d ~6.31 litres 

3 a Cris y=3sinf, Cois y=sinfE b 42 units 
¢ The area in b represents the total amount of energy that enters 

the greenhouse in the first 10 hours. 

4 a KB 
. 300 3 b (0,0) and (In2,1) ¢ (3In2 — 2) units? B = min((u.x)w) 1 70cos(U505) ¢ 106 

-1 3 250 

1 aA:/ (x3—7x—6)dx+/(—x3+7x+6)d:c 200 
2 -1 

150 
b 32% units? ° 

12 a 100 

50 

UO 2 4 6 8 10 12 7 

4 

b i / E(t) dt ~ 220.12 

3 

The power consumption of the United Kingdom in April 

is about 220.12 TWh. 
8 

ii E(t) dt ~ 392.96 
b xz=-2,1,and 3 < 21% units? 5 

13  a 8 units? b 1012 units? The power consumption of the United Kingdom from 

. 4 . June 1st to September 1st is about 392.96 TWh. 
14 a Cyis y=sin2z, Cais y=sinz 

b AZ. ) L1 units2 € 23 units 

EXERCISE 17E B 

  

  

  

  

    
  

  

  

  

  

                  

12 

/ E(t) dt = 2352 
0 

The yearly power consumption of the United Kingdom 

1 a 20 cars per minute b ~ 8:05 am is 2352 TWh. 

< 50‘3 t) 15 REVIEW SET 17A IS 
R(t)dt represents the 1 as b §7 1 . 11% 

40 10 vz 
total number of cars going 2 ab=3 bbr1.86 

30 past the pedestrian crossing 3 a 124 b V2 ¢ 2In3 
from 8:10 am to 8:15 am. 9 

_1 1 20 b a=3In2 5 5-12 

d 
10 6 e (672’” sin z) = e %@ (cosz — 2sinx) 

. 3 
0 > [e’2z(cos:c — 2sin :c)] de=e™ 7 

0 10 20 30 0
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7 a ~ 123617 b~ 1.95249 

8 a 3(@®+1)i+ec b i LB i 82 

9 a %el"‘a +ec 

10 a 9 units? b (37 + 1) units? ¢ 36 units? 

d (3103 — 2) units? 

11 a 39 units? b (1—36 - 2\/3) units? ¢ 3 units? 

12 a b (-2, —3) and 
(1, 6) 

  1 ynits2 ¢ 43 units 
  

  

      

  

                        

1 3 

13 No, total area shaded = f(z)dx — / f(z) da. 
-1 1 

14 k=16 15 

17 a 

aa=In3 b b=In5 16 403 units? 

b (1— %) units? 

     
y=sinx 

1 
2 

18 a i/ Ro(t) dt ~ 0.655 
0 

About 655 millilitres of water leak from the watering can 

in the first 30 seconds. 

1 

ii / [R1(t) — Ra(t)] dt ~ 5.03 
0 

There are about 5.03 litres of water in the watering can 

after 1 minute. 

b & 199 seconds 

19 a 7%c05(12) +ec 

REVIEW SET 17B NS 

2v2 8 —_ 3 1 a2-22 b -3 ¢ £ 2 a=4 

3 a 2(VB-v2) b 4in(3) < T+V2 

— 3 V3 b b=Zor=f 5 g+ 

6 a ~3528 b ~2963 
7 a6 b3 ¢ k=-3 

1 
8 b -3 
9 a €3 +6e% 4+ 127 +8 b e +3e2+12e— T3 

10 a L + b 2 e 5 
2(1 + sinz)? 18 

et -1 
11 a 22 units? b In3 units? < units? 

d 4.—;' units? 

12 43 units? 13 (3 — In4) units? 

  

  

  

  

  

  

  

                        

14 a 

-+ 

Y 

b (=3, -3) and (V3. -3) ¢ 928 i 
_ 4 _ 12 15 k=3 16 mfg 17 2155 units 

18 a a=-3 b A has z-coordinate /4. 

12 

19 a/ B(t) dt ~ 10.7 
5 

The solar energy transferred into Callum’s solar panels from 

5 am to 12 pm is about 10.7 kWh. 

20 

b/ E(t) dt ~12.9 
1 2 

The solar energy transferred into Callum’s solar panels from 

12 pm to 8 pm is about 12.9 kWh. 

20 
< / E(t) dt =~ 23.5 

5 

The solar energy transferred into Callum’s solar panels from 

5 am to 8 pm is about 23.5 kWh. 

EXERCISE 18A N 

1 a 5 cm to the right of the origin 

b i 2cm to the right of the origin 

ii 5 cm to the left of the origin 

cat t=5s 

d No, the displacement function s(t) is linear, so it has no 
turning points. 

e t=10 t=5 t=3 t=0 

2 a 1 m to the right b 

of the origin 

  

¢ t=0.35s, 0.225 m to the left of the origin 

dat 0<t<02s and 0.5<t<1s 

€ =05 t=02 t=1 
I 
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¢ 14 cm to the right of the origin, at ¢ = 0.0625 s, and 

2 cm to the left of the origin, at ¢ = 0.1875 s 

d t=0.25 

t=0.1875 - 1=0.125 
=0 t=0.0625 

EXERCISE 18B.1 NS 

1 a i3m i —3m b —2ms! c—%ms‘l 

2 a —2ms! b v(t)=2t—6 ms~! 

¢ i —4ms?! il 4ms™?! 

3 a 2cm to the left of the origin b t=6s 

¢ to the right dt=3sand t=9s 

e i _ RO -l = o) 
6 t 3 9 t 

0 0 

f lems™! 

4 a %cms’1 b 3 cm to the right of the origin 

1 
< v(t):7zcms_1 d i %cms_1 ii %cms_1 

5 a u(t)=3t2-22t+24 ms~ ! 
b The object is initially at the origin, moving to the right at 

24 ms~1, with decreasing speed. 

¢ + + () F -+ () 
3 8 t 

0 0 

d at0s,3s,and8s 

e at % sand 6 s; s(%) ~14.8 m, s(6) = —36 m 

f The object starts at O, and moves towards the right at 

24 ms~1. Its velocity is decreasing. After % seconds, when 

it is 14.8 m to the right of O, it changes direction and moves 

to the left, passing O after 3 seconds. After 6 seconds, when it 

is 36 m to the left of O, it changes direction again and moves 

towards the right, passing O once more after 8 seconds. 

  

N
 

  

   t=64 

  

' t=0 " 3 

posttion ) Gy V1 
—40 -30 =20 —-10 O 10 20 30 40 s(t) 

6 b i 69.58ms™! il ~247m 

EXERCISE 18B.2 W 

1 110 m 

2 a i travelling forwards 

i travelling backwards (opposite direction) 

b 16 km ¢ 8 km from starting point (on positive side) 

3 a   20 
A velocity (ms) 
  

    15 
  

10   

  

  o 

                                      
0 60 120 180 240 300 

b 3.3 km 

  b 61 km 
04 elbeity (kimh 1) 6 
  

40   
  

30   
  

20     
  

10                                             0   
0 2 4 6 8 10 12 14 16 18 

5 a at t= 2 sccond 3 ¢ Ocm 1 b 5 cm 

6 a s(t):%t:‘—%tz—% cm b 5% cm 

< 1% cm left of its starting point 

a s(t) =29.4t —4.9t2 +1m 

a s(t)=32t+2t2+16m 

b There is no change in direction, 

so displacement = s(7) — s(0) = / (324 4t) dt 
0 

b 451 m 

  

  

  

  

  

                              
  

¢ 160 m 

342 9 alm bs(%):‘/-T*'m 

10 a A(t) (cm per second) 

25 

20¢ 

15 
/(1) = 20 + 5sindt 

10 

5 

t (seconds) 
0 > 
0 1 2 3 4 5 6 

b ~16.2 cms™! ¢ ~4l.4cm 
3 

11 a s(t)=-4t+2t> m b t=16s 

¢ = 10.5 m left of the origin d ~322m 

12 a i 10ms~! i 10v/2ms™! 
2 

¢ / o(t) dt ~ 18.9 
0 

  

The motorcyclist travels about 

18.9 m in the first 2 seconds. 

d i 4 seconds 

il Yes, he only needs 53% m to reach the required speed. 

13 a =513m b ~0.637 cm 

EXERCISE 18C N 

1 a 16cems™! b 6 cms2 

¢ a(t)=10—2t cms~2 d 4cms—2 

2 as(2)=-1m v(2)=8ms"! a(2)=10ms2 

b t= l; s 

3 a o(t)=98—-9.8t ms! a(t) = —9.8 ms—2 

(t) + 5 — t a(t) l;{ t 

0 20 0 20 

b s(0) =0 m above the ground, v(0) = 98 ms~' upward 

¢ At t =5 s, the stone is 367.5 m above the ground and 

moving upward at 49 ms—1. Its speed is decreasing. 

At ¢t =12 s, the stone is 470.4 m above the ground and 

moving downward at 19.6 ms~!. Its speed is increasing. 

d 490 m e 20 seconds



U(t):100*4067% ems™L, a(t) =8e % ems2 3 

b s(0) = 200 cm to the right of the origin 

v(0) = 60 ecms—1, a(0) =8 cms~2 

¢ as t — oo, v(t) — 100 cms~ (below) 

d as t— oo, a(t) —0cms2 

2 
ems™t 

2t +1 
  

4 —2 
e 35 cms o 

S
 IS 

h ~134m 

  

12 1 
t) = — —3t+45 ms™ v(t) =55 
60 

b/ () dt = 900 
0 

Hint: Show that v(t) = 100 — 80e 2" ms~! and as 

t — oo, v(t) — 100 ms™1. 

b ~370m 

v(t) = — 

The train travels a total of 900 m 

in the first 60 seconds. 6 

1 

—1 m+l ms 

1 
b s(t)y=——+t—1m 7 

® t+1 + 

¢ The particle is % m to the right of the origin, moving to the 

2 right at % ms~!, and accelerating at 2—27 ms— <. 8 

EXERCISE 18D NS 

1 a v(t)=2t—6ms ! a(t) =2ms™2 

- + o) + a(t) 
3 t t 

0 0 

b s(0)=7m, v(0)=—-6ms~!, a(0)=2ms"2 

Initially, the object is 7 m to the right of O, moving to the 

left at 6 ms—1, with acceleration 2 ms~2. 

¢ 2 m to the left of O 

d t=3_____* t=0 
U N [ Iy 

7 -4-3-2-10 1 2 3 4 5 6 8 position 
origin 

e 0<t<3 

2 al2m 

b s/(t) = 28.1— 9.8t represents the instantaneous velocity of 

the ball. 

¢ ~41.5m 

d i 281ms ! il 8.5ms™1t iii 20.9 ms—! 

- 
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v(t) =12 — 6t2 ems™!, a(t) = —12t cms™2 

s(0) = —lem, v(0)=12cms™!, a(0)=0cms™2 
The particle started 1 cm to the left of the origin and was 

travelling to the right at a constant speed of 12 cms~—1. 

=2, s(fi):Sfi—l cm 

V2s it> il never 

  

10 11 
position 

| 
-2-10 1 2 3 4 5 6 7 8 9 

origin 

o(t) = 7— 

1 1 

l—' 

v(0) = —5 ms™ 1, s(0) =3 m, 3 a(O) = % 

Initially, the particle is 3 m to the right of O, moving to the 
1 2 

ms—?2 

m 572 

with acceleration % 

After 3 seconds, the particle is 2 m to the right of O, moving 

to the left at % ms—!, with acceleration 312 ms—2, 

left at % ms~ ms~ 

d The particle’s speed is continuously decreasing. 

o 
0 

A 
o 

Q
A
 

k~ 1.87 

v(t) = 9.8t + 4.9 ms™! 

+ — 

a(t) = —9.8 ms—2 

0 T xisr 0 
i decreasing ii increasing 

z(0) = v(0) =0 cms™!, a(0) =2 cms™? 

At t = % seconds, the particle is (V2 — 1) em to the left 

of O, moving to the right at v/2 cms™?1, with acceleration 

V2 cms2. 

changes direction when ¢ =7s, z(7)=3cm 

—1 cm, 

increasing for 0 <t < § and 7 <t < 37" 

i right i left b v(t) =4cos & ms~! 

i left i right d a(t)=-2 sin% ms—2 

decreasing 

o(t) ems™") 
125 

  

  

  

  

                

0<t< 3 dt>4 

lion: ~ 13.6 ms—!, zcbra: 1.90 ms—! 

Ao(t) (ms™! 

20 

15 Y — 20— 20e=0-1 

10 

5 
0 vi(t) = 15e 701 

0   
0 5 100 15 20 25 30 t(s) 

The lion’s speed v1(t) decreases over time whereas the 

zebra’s speed va(t) increases over time.
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3 120 . 360 Ly 
c / vi(t) dt = 150 — 150e =03 ~ 38.9 6 2 v =1ty ems alt) =~ oms 

0 . ) b At t = 3, the particle is 41.25 cm to the right of O, 
The lion has travelled about 38.9 m in the first 3 seconds. . . 1 - 

3 moving to the right at ~ 16.9 cms™ ", with decreasing speed 

~ —1.41 cms™2). 
d [v1 (£) — va(t)] dt = 290 — 350603 (@(3) ~ ALems : ) 

o ~ 307 ¢ The particle’s speed is never increasing. 

_ _ ¢—1 _ —2 
In the first 3 seconds, the lion has gained about 30.7 m on 7 a 2(0)=3m, 2'(0)=2rms™", 2”(0)=0ms 
the zebra. b t:%,l%,2%,3%, 4% s ¢ 20m 

e At the time when v1(t) = va(t), the lion and the zebra will 8 alm b 6m ¢ 4m 
be moying at the same speed. Siftce the lion’s sp_eed decreases 9 & u(t)=—2t+65ms ! b s(t) = —t2+ 65t m 
over time and the zebra’s speed increases over time, the zebra . . 

will be faster than the lion after that time. So, they will be ¢ 13ls ;' 1054 m | 

closest at the point when their speeds are equal. 10 a v(0)=25ms™", v(3)=4ms™ 

§ 71()1“(4_;) ~5.60s b as ¢t — oo, v(t) — 0 from above 

< 
g No, the lion was about 1.92 m from the zebra at their closest 

point. 

REVIEW SET 18A NS 

1 a 12 m to the right of the origin 

b i 10 m to the right of the origin ct=6s 

ii 6 m to the right of the origin t(s) 

d No, the displacement function is linear, so it has no turning ) 

points. 
e t=10 tm6 t=3 t=1 d / v(t) dt =25 The boat travels a total distance of 

e———————o—e—0t=0 0 25 m in the first 2 seconds after 
-l 1y s(t) its engine is turned off. 

-8 0 6 10 12 e 3 seconds 

2 a 13cms™t b i 9cms! i 17 cms™! REVIEW SET 18B W 

¢ a(t) =4 cms? 1 a 1 m to the right of the origin b 8ms— ! 

3 a ou(t) =6t2—18t+ 12 cms™ !, a(t) =12t — 18 ecms—2 ¢ v(t)=2t+4ms ! d 6ms™! 

+ o = | + () — + a(t) 2 200 m 

ooz 0 1 % 3 a ou(t) =3t2 30t +27 cms ! 
. b —162 cm (162 cm to the left of the origin) 

b s(0) =5 cm to left of origin 3 

0(0) = 12 cms ™! towards origin 4 a () =3-35Viems? a(t) = ——= ems ™2 
2 . Vi 

a(0) = —18 cms™* (decreasing speed) 4 ) @ 
- 3 - a 

¢ At t =2, the particle is 1 cm to the left of the origin, is |_4‘1_>t |—>t 
instantaneously stationary, and is beginning to accelerate. 0 0 

datt=1s, s=0cm, andat t=2s, s=—1cm b z(0)=0, v(0)=3 

e i—0 =9 The particle is initially at the origin, moving to the right at 

t=1 3emsL 

_5 1 o0 > (1) ¢ The particle is & 3.17 cm to the right of the origin, travelling 

L . 1 to the right at ~ 0.879 cms~', with decreasing speed 
f Speed is increasing for 1 < ¢t < 15 and t > 2 (a(2) ~ —0.530 cms’z). 

4 a + | = + w(t) d 

2 4 t f 
0 

b The particle moves in the positive direction initially, then at 

t=2, 6% m from its starting point, it changes direction. It 

changes direction again at ¢t = 4, 5% m from its starting 5 a 

point, and at ¢t =5, itis 6% m from its starting point again. 

2 1 ¢ 65m d 93 m b 

5 a i 275ms ! il ~1.62ms ! 

b Hint: Show that a(t) and v(t) are opposite in sign for all < 
<t <6. 

2 Ost<6 6 a 

< / v(t) dt =~ 4.54 The kayak travels approximately 
0 4.54 m in the first 2 seconds after 

the kayaker stops paddling. b 

at t =4s, 4 cm to the right of O e 0<t<4 

‘mt:4 g ~4.70 cm 

-1 o T z(t) 

i 7.2ms™2 il 9.6 ms2 i 0ms™2 

v —12ms—2 

3 

/ v(t) dt =27 The human cannonball travels 
0 27 m in the first 3 seconds. 

~3.14s 
.t 

v(t) = —8e ' —40 ms~! 
.t 

at)=%e ¥ ms 2 {t>0} 

5(0) =80 m, v(0)=—48 ms~!, a(0)=0.8 ms 2



d ¢t =10In2 seconds 

t(s) 4 

  

b o<t 2<¢t 

So, for 2n <t < 

~6.76 ms—! 

<3, 4<t<5, and so on 

2n+1, ne {0,1,2,3,...} 

8 a 

b a(t) = 0.15(t11 + 3t)0-5(1.1t%1 + 3) ms—2 

¢ ~1.79ms™2 d ~109m 5 
_ 1 1 ~ < 6 9 a s(t)=—ggt*— 571> +2m b ~346s 

10 a Tyson 

Tyson has travelled about 42.0 m 

in the first 5 seconds of the race. 

5 

b / vi(t) dt ~ 42.0 
0 

¢ s1(t) = 10t +8e 125 —8m d Tyson 7 

s2(t) = 10.5¢ + 10.5¢ 7" — 10.5 m 

e Hint: Find ¢ such that sq(t) = 100. f Maurice 

EXERCISE 19A W 

  

  

  

  

  

  

                            

  

  

  

  

  

  

  

  

  

      

1 a weak, positive, linear correlation, with no outliers 

b strong, negative, linear correlation, with one outlier 

¢ no correlation 

d strong, negative, non-linear correlation, with one outlier 

e moderate, positive, linear correlation, with no outliers 

f weak, positive, non-linear correlation, with no outliers 2 

2 a Hours worked is the explanatory variable. 3 

Number of customers is the response variable. 

b A number of customers 
12 ° 

s ; 
° 

° ° 

4 ° 

hours worked 
0 e 

0 2 4 6 8 10 

¢ i Monday and Friday ii Wednesday and Sunday 

d The more hours that Tiffany works, the more customers she 

is likely to have. 

3 a 1045 dge B 
°o | 

° 
8 

° 
oo 

6 11 
4 ° 

2 

0 Judge                     
0 2 4 6 8 10 

b There appears to be strong, positive, linear correlation 

between Judge A’s scores and Judge B’s scores. This means 

that as Judge A’s scores increase, Judge B’s scores increase. 
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¢ No, the scores are related to the quality of the ice skaters’ 

performances. 

  

  

  

  

  

  

  

  

  

  

                        

a i jobG i job C 

b time 10 
(hours) 1 

8 ° 

6 ° 

4 O—I—O 
° 

° 
2 

0 number of workers   . 
0 2 4 6 8 10 

¢ There is a strong, negative, non-linear correlation between 

number of workers and time. 

a Db b A cB d ¢ 

a There is a moderate, positive, linear correlation between hours 

of study and marks obtained. 

b The test is out of 50 marks, so the outlier (> 50) appears to 
be an error. It should be discarded. 

¢ Yes, this is a causal relationship as spending more time 

studying for the test is likely to cause a higher mark. 

a Not causal, dependent on genetics and/or age. 

b Not causal, dependent on the size of the fire. 

¢ Causal, an increase in advertising is likely to cause an increase 

in sales. 

d Causal, the childrens’ adult height is determined by the 

genctics they receive from their parents to a great extent. 

e Not causal, dependent on population of town. 

EXERCISE 19B B 

1 weak, positive correlation 

  

  

  

  

              
  

  

  

  

  

  

  

  

  

                      

  

  

  

  

  

  

  

                

a B b A <D d C e E 

a i 104y il r~0.786 
° 

8 ili moderate, 

positive 

6 * correlation 
° ° 

4 
° 

2 ° 

T 
0 > 

0O 1 2 3 4 5 6 

b i Y i r=-1 16 Yo 

° iii perfect, 

12 ° negative 

° correlation 
8 

° 

4 ° 

0 C 

0 4 8 1216 

c i 124y : T~ 0.146 

10 very weak, 

s I o positive 
° correlation 

6 
° 

4 ° 

2 ° 

° 
0 
0
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b 
a 10 text messages received * 

8 ° 

° 
4 ° 

20—o 

phone calls reccived 
0 P - > 

o 1 2 3 4 5 6 7 8 

b r~0.816 

¢ moderate, positive correlation 

d Those students who receive several phone calls are also likely 

to receive several text messages and vice versa. 

5 a r=0.917 

b strong, positive correlation 

In general, the higher the young athlete’s age, the further they 

can throw a discus. 

  

  

  

  

  

                                        
  

  

  

  

  

  

  

  

                                        
  

6 a 120‘ drying time (y minutes 

° ° . 

80 o . 3 

40 L 
° 

temperature (z °C) 

N3 = 3 32 31 %6 3B D 

b r~ —0.987 ¢ very strong, negative correlation 

7 a 50 number of car accidents 

40 ° 
° 

30 ° 
° 

20 s 
° 

10 o o 

o T umber fsppqnnarkpt: 

0 2 4 6 8 10 12 14 16 18 

b r~0.572 

¢ The point (3, 37), which represents 37 car accidents in a 

town with 3 supermarkets, is an outlier. 

d i r=~0.928 

i strong, positive correlation 

iii Removing the outlier had a very significant effect on the 

  

  

  

  

  

  

  

  

  

  

  

                                                    
  

value of 7. 

e No, it is not a causal relationship. Both variables depend on 

the number of people in each town, not on each other. 

8 a 3004 MS|inciderice/per 100 000 - 

250 
° 

200 

* o 
150 . . o 

100 ° ° e 
° 

50 LN 
olo 00 © °e T Tatitude(degy 5qs>) 

0 6 12 18 24 30 36 42 48 54 60 66 72 

b r~0.849 ¢ moderate, positive correlation 

d The incidence of MS is higher near the poles. 

EXERCISE 19C I 

1 af   
Ay 

30   

  

ean point (14, 16) 
20 /e   
  

                                  
10 ° 

o 

° 
0 € 

0 4 8 12 16 20 24 28 

b negatively correlated ¢ r =~ —0.881 

d strong, negative correlation e (14, 16) g y~"T 
  

2 ae A y (beats per min) 

90   

  

     
80 

meal nt (4 
70 

60 

  

  

50 

T tke) 
20 30 40 50 60 70 

b r~0.929 

¢ There is a strong, positive correlation between weight and 

pulse rate. 

d (45, 64.6) 
f 68 beats per minute. This is an interpolation, so the estimate 

is reliable. 

3 ae 

Ay(m) 
30 ° 

                              

  

  

  

  20 
  

mean point (45, 15.7) 
  10 e 

® T (fi;m») 

0 10 20 30 40 50 60 70 80 90 100 

b (20, 22) ¢ very tall and thin d (45,15.7) 
f =~ 37 m. This is an extrapolation, so the prediction may not 

be reliable. 

g ~ 25 cm. This is an interpolation, so the estimate is reliable. 

EXERCISE 19D M 

1 ac¢ AY b y~1.92z —0.0667 

                                            0   
  

20   
  

  16 
  

12 °   
  

8 °   
  

4   
                    0 

  2 a Go‘y( inutes 
  

  50 o % 
  

  40 ° 
  

30 ° °     
                                                

16 18 20 22 24 26 28 30 32 34 36



6 

b r~—0.219 

There is a very weak, negative correlation between 

temperature and time. 

d No, as there is almost no correlation. 

a r~—0.924 

b There is a strong, negative, linear correlation between the 

petrol price and the number of customers. 

¢y~ —4.27z + 489 
d =~ —4.27; this indicates that for every cent per litre the 

petrol price increases by, the number of customers will 

decrease by approximately 4.27 . 

e ~ —5.10 customers f ~ 105.3 cents per litre 

g In e, itis impossible to have a negative number of customers. 

This extrapolation is not valid. 
In f, this is an interpolation, so this estimate is likely to be 

reliable. 

  a 
60y y (car accidents) 
50 2 s 

40 * 

30 ? 
20 8 
10 
0 

  

  

  

  

                                  3 qued cameras) 
> 

0 4 8 12 16 20 24 28 

b r~ —0.878 

  

speed cameras and number of car accidents. 

d y~ —1.06z + 52.0 

gradient: ~ —1.06; this indicates that for every additional 

speed camera, the number of car accidents per week decreases 

by an average of 1.06. 

y-intercept: ~ 52.0; this indicates that if there were no 
speed cameras in a city, an average of 52.0 car accidents 

would occur each week. 

f = 41.4 car accidents 

a, d   

  

  

  

  

  

  

                                        

A ceili 13 ceiling (km) 

12 

11 

10 

9 

8 maximum speed (km h™T) 

400 450 500 550 600 650 700 750 800 

b 7~ 0.840 

¢ moderate, positive, linear correlation 

d y~0.00812z + 6.09 

e ~ 0.00812; this indicates that for each additional kmh—!, 

the ceiling increases by an average of 0.008 12 km or 8.12 m. 

f ~11.0 km g ~ 605 kmh~?! 

a, d   
28y y (hours) 
24| o 

20 
16 
12 : 

  

  

  

  

  

        (hours)                       

There is a strong, negative correlation between number of 
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¢ There is a strong, negative, linear correlation between time 

exercising and time watching television. 

d y~ —213z+22.1 

gradient: =~ —2.13; this indicates that for cach additional 

hour a child exercises each week, the number of hours they 

spend watching television each week decreases by 2.13. 

y-intercept: =2 22.1; this indicates that for children who do 
not spend time exercising, they would watch television for an 

average of 22.1 hours per week. 

f i 9 hours per week il & 7.22 hours per week 

iii This particular child spent more time watching television 

than predicted. 

  

  

ky (kg ° 
  

  

  

  

                                      0 

¥
 

0 6 12 18 24 30 36 42 48 

(50, 4.4) is the outlier. 

b i reduces the strength of the correlation 

il decreases the gradient of the regression line 

¢ i r~0.798 i r~0.993 

d i y=0.0672x+ 2.22 il y~0.119z + 1.32 

e The one which excludes the outlier, as this will be more 

accurate for an interpolation. 

f Too much fertiliser often kills the plants. In this case, the 

outlier should be kept when analysing the data as it is a valid 

data value. If the outlier is a recording error caused by bad 

measurement or recording skills, it should be removed before 

analysing data. 

EXERCISE 19E I 

1 a The y variable, money spent on fast food, can be measured 

exactly. The z variable, time spent on homemade meals, will 

not be measured exactly. 

b =~ —0.0576y + 8.29 

  

  

  

  

  

  

  

  

  

  

  

    
                                                    

i ~5.70 hours i ~ $57.13 

2 a2 607 
50 » 

40 * 

30 1 ° 

20 

s 
10 

oLe 2‘6‘_@ 

0 5 10 15 20 25 

bz against y, since a student’s time taken to travel to school can 

be more precisely measured than their distance from school. 

¢ ~ 33.9 min 

d  This is an interpolation, so this estimate is likely to be reliable. 

3 ac 144 

140 

136 

132 

128 

124 

120  
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b iy~ —-128zc+219 iz~ —0.693y + 160 
¢ The two regression lines are very similar. The regression line 

of x against y is slightly steeper. 

& b The regression lines are the same if 72 = 1. 

REVIEW SET 19A B 

1 a strong, positive, linear correlation, with no outliers 

b weak, negative, linear correlation, with one outlier 

¢ strong, negative, non-lincar correlation, with no outliers 

a The correlation between water bills and electricity bills is 

likely to be positive, as a houschold with a high water bill is 

also likely to have a high electricity bill, and vice versa. 

b No, there is not a causal relationship. Both variables mainly 

depend on the number of occupants in each house. 
  

3 a4y 
18 ° 

15 

12 

  

  

  

  

  

                o w 
o
 ©
 

° 

0 3 6 9 12 15 

b negative ¢ r~—0.906 

4 a 
12400 (8 % 1000 
10 ° 

  

  

  

  

    N
 

3 
o 

° ° 

                              = ($ % 1000) 

0 4 8 12 16 20 24 28 > 

b r~0.776 

5 a mean time &~ 13.3 min, mean spending ~ €57.07 

b 

o   

¢ moderate, positive correlation 

  

  

  

  

    

  

                  

1604 money (€) 
mean point 1 ° 

120 13.3,57.07) 

80 . < : 
v 

10 ° . 
time (min) 

0 
0 5 10 15 20 25 30 

¢ There is a moderate positive lincar correlation between time 

  

  

  

  

  

  

  

                                
  

in the store and money spent. 

6 a 170 ylem) 

° 

150 S ° 

130 + T 
o 

110 %o 

° 
90 (. eqrfl 

0 2 4 6 8 10 12 14 

b y =~ 5.98z + 80.0 

¢ = 5.98; this indicates that each year, a child grows taller by 

an average of 5.98 cm. 

d =~ 110 cm e 10 years old 

  

  

  

  

  

  

                                      

7 a 160‘1/ tomatoes) ° 

120 ° 

° 
° 

80 * 
° 

40 

mL per L 0 perl) 
0 2 4 6 8 10 12 14 16 

b 7~ 0.340. There is a very weak, positive, linear correlation 

between spray concentrations and yield. 

¢ Yes, (15, 82) is an outlier. 

d r =~ 0.994. Yes it is now reasonable to draw a regression 
line. 

e y~9.93z + 395 
f gradient: ~ 9.93; this indicates that for every additional mL 

per L the spray concentration increases, the yield of tomatoes 
per bush increases on average by 9.93. 

y-intercept: ~ 39.5; this indicates that if the tomato bushes 

are not sprayed, the average yield per bush is approximately 

39.5 tomatoes. 

  

  

  

  

  

  

  

  

                              

g i = 109 tomatoes per bush il ~16.2mL per L 

h 1In g i, this is an interpolation, so this estimate is likely to be 

reliable. 

In g ii, this is an extrapolation, so this estimate may not be 

reliable. 

8 a 36 4 {km 

32 *: 
° o 

28 * 
° 

24 3 

20 

T(°C) < ) 
20 22 24 26 28 30 

b The values for the distance travelled d are more precisely 

measured than the daily temperature which Thomas is just 
estimating. 

¢ T~ —0.689d + 42.3 d ~17.9 km 

REVIEW SET 19B B 

1 a Negative correlation. As prices increase, the number of 

tickets sold is likely to decrease. 
Causal. Less people will be able to afford tickets as the prices 

increase. 

b Positive correlation. As ice cream sales increase, the number 

of shark attacks is likely to increase. 
Not causal. Both of these variables are dependent on the 

number of people at the beach. 

  

  

  

  

  

  

  

                      

2 a 904 Art project mark 

e o0 

80 

70 %o |0 

o 

60 * 
I ) 

W » Mathematics test mark 
60 70 80 90 

b There is a strong, negative, linear correlation between the 

Mathematics and Art marks. 

¢ r=~—0.930



  

  

  

  

                              

a (50, 2.51) 

At(s) 

4 ean point 
50,2.51 

3 N, 

2 

1 
v (kmh™") 

0 > 
0 20 40 60 80 100 

¢ 1 = 2.68 seconds il & 4.44 seconds 

d The estimate in ¢ i, since it is an interpolation. 

  

  

  

  

  

  

  

                                              

a r~0.983 b y=3.36z + 8.64 ¢ 422 

ad 04 e 

30 

20 

10 

TECT ) 
0 

0 100 200 300 400 500 600 700 800 900 

b r~0.994 

¢ There is a very strong, positive correlation between area and 

price. 

e = £43.42, this is an extrapolation, so it may be unreliable. 
  

  

  

  

  

  

  

  

  

                        

a As 

600 o 

550 

500 

450 o o 
o 

400 
o ° 

p(S) 

1.40 1.80 220 2.60 

b Yes, the point (1.7, 597) is an outlier. It should not be deleted 

as there is no evidence that it is a mistake. 

¢ s~ —116p + 665 
d =~ —116; this indicates that with every additional dollar the 

price increases by, the number of sales decreases by 116. 

e No, the prediction would not be accurate, as it is an 

extrapolation. 

  ad 3004 ¢ 
  

  200 

  

  100 

    
0 . 0 2 4 6 '8 

                
  

There is a very strong, positive correlation between number 

of waterings and flowers produced. 

b f~34.0n+19.3 

¢ Yes, plants need water to grow, so it is expected that an 

increase in watering will result in an increase in flowers. 

e i 104 flowers (n =2.5), 359 flowers (n = 10) 

il m=2.5 is reliable, as it is an interpolation. 

n = 10 is unreliable as it is an extrapolation and 
over-watering could be a problem. 
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a  Ay(hits) 
10 

° ° 

8 ° ° ° 

o o 

6 ° 

4 ° 

o o 

2 T— 

zfm) 
0 

0 10 20 30 40 50 60 70 80 

b The number of hits can be measured exactly, while the 
distance from the target might not be exact. 

¢ xr~ —T7.89y+93.7 

d = —0.8shots, but it is impossible to make a negative number 

of shots. This extrapolation is not valid. 
    

EXERCISE 20A NS 

    

1 a continuous b discrete ¢ continuous 

d continuous e discrete f discrete 

g continuous h continuous 

2 a i X = the height of water in the rain gauge 

il continuous il 0< X <400 mm 

b i X = stopping distance ii continuous 

0< X <50m 

< number of switches until failure 

i discrete ili any integer > 1 

3 a X has a set of distinct possible values. 

b X=23,45,6,7,89,0r10 

L a X=4,5060r7 b i X=5 i X=6o0r7 

5 a X=01,23,0r4 

b vVvvVv VVVx VVxx xxxV xxxx 
VVxy VxVx xxvx 
VYV VxxVv xVxx 
xVVV xxVV Vxxx 

l xv %V l 
xV V% 

(X=4) (X=3) (X=2 (X=1) (x=0 
i X=2 i X=230r4 

6 a X=0,1,20r3 

b HHH HHT TTH TTT 
HTH THT 

THH HTT 
(X=3) (X=2 (X=1 (X=0) 

¢ No, for example there is probability é that X = 3, and 

probability £ that X = 2. 

EXERCISE 20B NS 

1 a 

b 

2 a 

3 a 

b 

< 

4 a 

b 

i yes 

k=02 

a=0.2 

ii no 
  

il 

For a iii, X is a uniform random variable. 

1 b k=2 

yes iv no 

No, as the probabilities of each outcome are not all equal. 

2 d P(X >2)=065 
P(2) = 0.1088 
a = 0.5488 is the probability that Jason does not hit a home 

run in a game.
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¢ P(1)+ P(2)+ P(3) + P(4) + P(5) = 0.4512 and is the 

probability that Jason will hit one or more home runs in a 

game. 

  

  

          
0 1 2 3 4 5 

e mode = 0 home runs, median = 0 home runs 

5 a k=004 b 0 tyres 

¢ P(X > 1) = 0.12 which is the probability that more than 
1 tyre will need replacing on a car being inspected. 

  

A probability 

  

    O @
 

ol
 

ool
es 

ol
 

1 2 3 4 T 

¢ mode = 1, median = 2 

7 a X=123,0r4 

  

8 a X=123o0r4 

  

median = 2 shots 

9 a PO)=4, P)=3. PQ) =5 PB) =% 

0 < P(z;) <1 in each case, and 

¢ mode = 1 shot, 

; 
S P = g 
=1 

P(z) is a valid probability function. 

b P()=. PQ)=. PB)=F 
0 < P(z;) <1 in each case, and 
n 

S P = e 
i=1 

P(z) is a valid probability function. 

1 12 10 a k=55 b k=3 

_ —_1)= 3 11 aa=10 b PX=1)=15 c 2 

3 _2 _3 12 a 3 ba=3% 13 a=3% 

EXERCISE 20C.1 NS 

1 a E(X)=17 b E(X)=25 ¢ E(X) =385 
d E(X) =30 

2 aa=3 b3 ¢ p=2% 
3 ~ 11.7 points 4 1.57 fish 

5 aa=025 b 4 books ¢ 3.13 books 

6 5.25 lollies 7 

8 a=01 b=04 
9 a offensive strategy: P(draw) = 0.15 

defensive strategy: P(draw) = 0.5 

b offensive strategy: 1.05 points per game 
defensive strategy: 1.1 points per game 

defensive strategy 

Yes, an offensive strategy would then be better. 

a & b ~ 8.93 pins 

10 i car park B ii car park A iii car park B 

Zoe should choose car park A as the expected cost for car 

park A is $14.80 whereas the expected cost for car park B is 

$15.25. 

11 8390 

EXERCISE 20€.2 NS 

1 fair 2 a $3.50 b —$0.50 ¢ no 

3 a ~-$%0.05 b lose~ $5.41 & —$0.75 

C
o
 

Q
a
 

5 a i03 i 0.1 b E(X) = 2.5 tokens 

¢ No, as the player can expect to lose half a token on average 

per game. 

a Expected gain ~ —$0.67 # $0 b $30 

7 aP(X<3) =% PA<SX<6)=1, ca=7 

PT<X<9 ==, PX>100=13 

d The organisers would lose $2.50 per game. e $4010 

8 $4.75 

EXERCISE 20D NS 

1 a The binomial distribution applies, as tossing a coin has two 

possible outcomes (H or T) and each toss is independent of 

cvery other toss. 

b The binomial distribution applics, as this is equivalent to 
tossing one coin 100 times. 

¢ The binomial distribution applies as we can draw out a red 

or a blue marble with the same chances each time. 

d The binomial distribution does not apply as the result of each 

draw is dependent upon the results of previous draws. 

e The binomial distribution does not apply, assuming that ten 
bolts are drawn without replacement. We do not have a 

repetition of independent trials. However, since there is such 

a large number of bolts in the bin, the trials are approximately 
independent, so the distribution is approximately binomial. 

2 a (p+q)* =p* +4p°q+6p°¢* + 4pg® + ¢* 

o) = ') - 4 
6(3)°(3)° =4 

3 a (p+q)® =p°®+5ptq+ 10p3¢% + 10p2¢3 + 5pg* + ¢° 

  
4 a 

b 

5 a 

b



6 b (2),p% (1-p)" >0 - P2)>0 
n 

Now Y P(z)=1 .. P(@)<1 
=0 

< P(z)<1 forall 2=0,1,...,n 

¢ P(x) is a valid probability distribution. 

EXERCISE 20E NS 

1 a =~0.0305 b ~0.265 

2 a ~0476 b ~0.840 ¢ =~ 0.160 d =~ 0.996 

3 a ~0.0280 b x~0.00246 ¢ ~0.131 d ~0.710 

4 = 0.000864 5 a ~0.998 b ~0.807 

6 a ~0.0388 b ~0.405 ¢ ~0.573 7 =~ 0.0341 

8 a ~0863 b ~0475 9 a &= b x0846 
10 a ~0.0905 b =~0.622 

¢ Yes, the probability that Shelley is on time for work each day 

of a 5 day week is now ~ 87.2%. 

11 a ~0.0388 b 25 solar components 

EXERCISE 20F B 

1 a ip=3 o=x122 

i -__ 

  

  

  

  

      

  

                    

““ 

probability 

0.3 

0.2 

0.1 

0 0 1 2 3 4 5 6 ; 

i The distribution is symmetric. 

p=12 o=0.980 

im0 [ T [ 2 T 3] 
P(z;) | 0.2621 | 0.3932 | 0.2458 | 0.0819 

  

  

    G001 
A probability 

0.4 

0.3 

0.2 H H 

0.1 H I 

0 1 > 
0 1 2 3 4 5 6 T 

  

  

  

  

                

i The distribution is positively skewed. 

p=438, o=0.980 

im0 [ T [ 2 [ 3 ] 
P(z;) | 0.0001 | 0.0015 | 0.0154 | 0.0819 

= T * T & ] 
02621 

A probability 

  

  

0.4 

0.3 

0.2 [ 

0.1 [ 

0 

      

  

  

            

o
 

v
 
W
 
P
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iii The distribution is negatively skewed and is the exact 

reflection of b. 

w=>5 02=25 

a p=12 o~ 107 b =288, o~ 1.07 
pn=39 o~ 184 

a p=285, o~ 267 b & 0.740 

a ux =np py = mnp 
=100 x % =300 & 
=50 =50 

b ox =5, oy ~6.45 

¢ X is more likely to lic between 45 and 55 inclusive because 

the standard deviation of X is lower than that of Y, which 

means there are more values of X which lie close to the 

mean. 

  

d i ~0.729 ii A~ 0.606 

REVIEW SET 20A NS 

1 a discrete b continuous ¢ discrete 

2 a iyes ii no iii no iv yes v yes vi yes 

b the distribution in a iv 
_5 4 aa=g b3 

4 a k=005 bo015 ¢2 dEX)=L7 
5 a X has a set of distinct possible values. 

b X=0,1,0r2 

< 

d 1.2 green balls 

6 ~3.83 

7 a $7 b No, she would lose $§1 per game in the long run. 

_ 2 . 8 aa=-3 b 4 marsupials 

4 1)° 4\° 4 1 4\3 (1)2 9oa (344) =(3)"+5(3) (3) +10(3)"(3) 
42 (1)3 4) (1)\* 1\° 

+10(2)"(3) +5(3) (3) + (3) 
_ o128 _ b i S8 —002048 i 128 =0.2048 

10 a pentagonal square b % 
spinner spinner 

i LR 

g n=__ / % R 

> i R 
5 R’ < 

T 
¢ i X ~B(10, 20 

. — 1) = (1) (1) (2)% & il p(x = 1) = (10) (44) (&)° ~ 0.00416 
10 P =9) = (1) (8)° (&) ~ 0.0207 

It is more likely that exactly one red will occur 9 times. 

11 a 40 days b ~ 2.83 days 

12 a i =~0.0751 il ~0.166 b = 4.97 games 

13 a i ~054 il ~0.456 

. o 3 \0 /g7 \7 . 
b 1P =0)= () () (%) iin =12 

= (0.97)"
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REVIEW SET 20B IS 

1 a X is the number of hits that Sally has in each match. 

X=0,1,2,3,4,0r5 

b i k=023 il P(X>2)=0.79 

il P(1<X<3)=0.83 

¢ mode = 3 hits, median = 3 hits 

3 a2 b3 < 2.7 

    

b p = % is the highest probability in the probability mass 

function. 
the mode is 1. 

5 a i Naomi il Rosslyn b Rosslyn 

6 a i2 i & i b $2.70 per game 

7 a=0.15 b=10.35 

8 a2 b i ~00881 i ~0967 

9 a The probability of rolling a two is not the same for each die. 

So X is not a binomial random variable. 

< i it = 0571 

10 a E(X)=21 b E(Y)=19 

11 a The probability of spinning a 3 is the same for each spin. 

b pu=4, c=179 

12 a 42 donations b i =0.334 i =0.0931 

13 a coin bowling probability 
toss ; 1 1 1 

2 strikes X5 =3 

. 2 heads 95— 1 strike i X % = % 
1 3 
4 | 15 0 strikes % X é = é 

3 . 1,1_1 1h€adilsmkc 7X3=% 

2z i 1,2_1 % 3 0 strikes 7X5=3 

1 _1 
IxX1=z 

  

¢ ~83.33 
d =~ — $1.67, Suvi should not play the game many times. 

EXERCISE 21A.1 HSSS 

1 B,D,and F 

2 a The diameters may be affected by: 

e the type of lathe used 

o the steadiness of the woodworker’s hand 

e the operating speed of the lathe. 

b The scores may be affected by: 

e the time spent studying 

e natural ability (for example, memory, learning ability) 

e general knowledge. 

¢ The times may be affected by: 

e the distance that the students live from their school 

e walking speed 

e physical fitness 

e the terrain. 

a The variable is not likely to be normally distributed as it is 

more likely that there would be more people younger than 

the mean age than there are older. The distribution may be 

positively skewed. 

N 
b The variable is likely to be normally distributed as the long 

jumper is likely to jump the same distance consistently, but it 

will vary due to factors such as the speed at which the long 

jumper runs before the jump, and the positioning of their body 

before hitting the sand. 

SN 
¢ The variable is not likely to be normally distributed as each 

number has the same chance of being drawn. The distribution 
should be uniform. 

  

d The variable is likely to be normally distributed as the lengths 

of the carrots will be generally centred around the mean, but 

will vary due to factors such as soil quality, different weather 

conditions, harvest times, and so on. 

N\ 
e The variable is not likely to be normally distributed. People 

are most likely to be served quite quickly. The distribution is 

likely to be negatively skewed. 

e 
f The variable is not likely to be normal as it is a discrete 

variable. Each egg has the same probability of being brown, 
so the distribution is binomial. 

  

      allL e 
0o 1 2 3 4 5 6 7 8 9 

        

0 11 12



ANSWERS 607 

g The variable is not likely to be normally distributed as it is a 

discrete variable. Most families will have 0 - 2 children, and 

there will be much fewer families with more than 2 children. 

The distribution will be positively skewed. 

  

EXERCISE 21B.1 N 

  

  

  

      
  

  

0 T > 3 1 1 a i40 ii 25 

h The variable is not likely to be normally distributed as there b i 1 standard deviation above the mean 
will tend to be many more shorter buildings than tall buildings il 2 standard deviations below the mean 
in a city. The distribution will be positively skewed. iii 3 standard deviations above the mean 

15 20 25 30 35 40 45 X 

EXERCISE 21A.2 d ~34.13% e ~0.1359 

1 aB b D <A dC 2 ap=20, o=4 
2 b 1 ~34.13% il &~ 13.59% ili ~ 2.28% 

3 a 

o 51 59 67 75 83 9L 99 

0 5 10 15 20 25 30 35 40 mL examination score 

3 b i ~1587% il ~2.28% ili ~ 81.85% 

4 a =~ 0.6826 b ~0.0228 

5 a i ~3413% il &~ 47.72% 

b i ~0.0228 ii ~0.8413 

¢ & 68 students d k~178 

6 a ~ 459 babies b = 446 babies 

7 a =41 days b = 254 days ¢ = 213 days 

a ~ 5 competitors b = 32 competitors 

¢ = 137 competitors 

a p=176g oc=24g b ~81.85% 

10 a i ~8413% il ~2.28% 
b i ~0.0215 il ~0.9544 ¢ ~0.0223 

EXERCISE 21B.2 NS A b 

60 65 X 60”62 67 X 

  

P(60 < X < 65) ~ 0.341 P(62 < X < 67) ~ 0.264 

‘A‘dAA‘ 

60 64 X 60 68 X   P(X > 64) ~ 0.212 P(X < 68) ~ 0.945
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f 

60™61 X 5757 60 "g25 X 

P(X < 61) ~ 0.579 P(57.5 < X < 62.5) 
~ 0.383 

~ 0.334 b =~ 0.166 3 ~0.378 

~ 0.303 b ~0.968 ¢ ~0.309 

~ 0.0509 b ~521% © & 47 eels 

i ~90.4% il ~4.78% b $4160 

i ~12.7% 

i 21.6 kL 

i ~21.5% il ~95.2% 

i Enrique ii Damien 

~ 10.3% b =~ 0.456 

~ 84.1% b =~ 0.880 

EXERCISE 21C.1 IESSS——————— 

Emma’s z-scores: 

English ~ 1.82, Mandarin ~ 2.33, Geography ~ 1.61, 

Biology = 0.9, Mathematics ~ 2.27 

b Mandarin, Mathematics, English, Geography, Biology 

The scores in cach of Emma’s classes are normally 
distributed. 

Sergio’s z-scores: 

Physics &~ —0.463, Chemistry ~ 0.431, 

Mathematics ~ 0.198, German ~ 0.521, 

Biology ~ —0.769 

German, Chemistry, Mathematics, Physics, Biology 

Frederick’s z-scores: 

50 m freestyle &~ 1.95, 100 m backstroke ~ —1.07, 
200 m breaststroke ~ —0.578, 100 m butterfly ~ 0.345 

Lower times are better as they indicate that the person swims 

faster. 

100 m backstroke, 200 m breaststroke, 100 m butterfly, 

50 m freestyle 

EXERCISE 21C.2 _ 

P(— 1<Z<1)~0683 P(~1< Z < 3)~ 0.840 

LL 
-1 0 

P(~1< Z <0) ~0.341 P(Z < 2) ~ 0.977 

A\ 
P(—1< Z)~0.841 P(Z > 1) =~ 0.159 

4 

5 

aa=-1b=2 b a=-05 b=0 

ca=0 b=3 

a IE b I 

070.5%1 Z —0.86 0™0.32 

P(0.5 < Z < 1) ~ 0.150 P(—0.86 < Z < 0.32) 
~ 0.431 

| ‘L AL 

-2.3 0 15 0 1.2 

P(—2.3< Z < 1.5) P(Z < 1.2) ~ 0.885 
~ 0.922 

| ‘A‘ ‘A‘ 

—0.53 0 0 1.3 

P(Z < —0.53) ~ 0.298 > 1.3) ~ 0.0968 

| ‘A‘ 

—-14 0 

P(Z > —1.4) =~ 0.919 P(Z > 4) ~ 3.17 x 107° 

JILA 
—0.500.5 —1.960 0 1.960 Z 

P(—0.5 < Z < 0.5) P(—1.960 < Z < 
~ 0.383 ~ 0.950 

A\ 
—1.645 0 1.645 Z —1.645 0 1.645 Z 

1.960) 

P(—1.645< Z < 
~ 0.900 ~0.100 

a i =0.976 b i =0.910 

a i z1~-0.859, 20~1.18 

1.645) P(|Z| > 1.645) 

i ~0.302 

il ~0.687 

EXERCISE 21D.1 NS 

a b 

0.9 

0.3 

% 20 X 20 k X 

k=~ 18.4 k=~ 238



A e 
20 X 20 k X 
k 

k=20 k ~ 225 

e f 

0.62 0.13 

20 k X 20 k X 

k ~ 20.9 k~234 

2 a b 

0.81 0.58 

0k 7 Yk Z 

k ~ 0.878 k ~ 0.202 

< d 

0.95 

0.17 

k0 7 k0 z 

k~ —0.954 k~—1.64 

e | f 
0.9 

0.41 

k0 Z 0k Z 

ko~ —1.28 k ~ 0.228 

3 a b a=309 

057 ¢ i 043 

ii 0.07 

30%, X 

a > 30 

4 a k=125 b k=~ 188 ¢ k=493 

5 a ~0.212 b kx75.1 

6 a a=42.0 b a=x46.7 ¢ a=40.1 

7 ~24.7cm 8 ~ 75.2 mm 

9 ~501.8mL to 504.0 mL 10 =~ 31.0°C 

EXERCISE 21D.2 NS 

1 a Greater. Data values less than 40 make up only 20% of all 

values. 

b u=45.0 

2 o~ 3.90 3 ~112 4 =~ 0.193 m 

5 ~ €96.48 6 ~ 4:01:24 pm 

7 n=~236, o~243 

8 a pu=524, o=~216 b ~54.3% 
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o~ 0.00353 cm 

o ~ 0.0305 cm 

b ~ 0.603 

b ~0.736 

9 a p~~4.00cm, 

10 a p~2.00cm, 

¢ ~0.153 

REVIEW SET 21A IS 

1 a The distribution of times taken for students to read a novel is 

likely to be positively skewed, and hence not normal. 

b The mean amount spent on groceries at a supermarket is 

likely to occur most often, with variations around the mean 

occurring symmetrically as a result of random variation in 

the prices of items bought and/or the quantities of items 

bought (for example weights of fruits and vegetables). So 

the distribution is likely to be normal. 

  

  

20 25 30 35 40 45 50 

  

X (mL) 

b i ~47.7% il ~2.28% 

3 

h a ~228% b =~ 68.26% ¢ ~95.44% 

5 a ~50.2% b ~ 7 oysters 

6 a Harri’s test score is 2 standard deviations below the mean. 

b ~97.7% <7 

7 a ~0.364 b ~ 0.356 ¢ k~18.2 

8 a ~6.68% b ~0.854 

9 a ~0.260 b =~ 29.3 weeks 

10 a k=281 b k=265 ¢ k~250 

11 ~0.842 

12 a p=29, o~107 b i =0713 i ~0.250 

13 a i ~0.0736 il ~ 0.0406 b ~ 0.644 

REVIEW SET 21B IS 

1 

  

2 apu=32 oc=5 

b i ~34.13% il ~84.13% il ~ 2.28% 

3 a i ~228% il =~ 84.0% b ~0.3413 

4 oa 1 ~761% il ~96.0% b ~0.598 

¢z~ 619 

5 k~1.96 

6 a ~0479 b ~ 0.0766 ¢ k552
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7 ~ 162 seconds 

8 a a~9.05 b ax~13.7 ¢ ax104 9 8.97 

10 =~ 0.0708 

11 a i ~0.0362 il ~0.610 il = 0.566 

b k=744 ¢ a=81.0, b=~102 d ~ 0.506 

12 a ~68.3% b ~0.0884 

13 a i =~0.722 il ~0.798 b ~ 0.0563



INDEX 

absolute value 
acceleration 
amplitude 
analytic solution 
antiderivative 
antidifferentiation 
asymptote 

average acceleration 
average rate of change 
average velocity 
axiom 
axis of symmetry 
binomial 
binomial coefficient 
binomial distribution 
binomial expansion 
binomial experiment 

binomial random variable 
binomial theorem 

bivariate data 
causal relationship 
chain rule 
change of base rule 
combination 
completed square form 
composite function 
concave downwards 
concave upwards 
conjecture 
constant of integration 
continuous function 
continuous random variable 
convergence 
correlation 
cosine 
decay 
decreasing 
definite integral 
dependent variable 
derivative function 
differentiation 
differentiation from first principles 
discrete random variable 
discriminant 
displacement 
domain 
double angle identities 
equivalence 
expected value 
exponential equation 
exponential function 
extrapolation 
factorial 
fair game 

91 
436 
202 
227 
373 
373 
78 

436 
264 
429 
258 
33 
16 
22 

493 
17 

492 
492 
23 

450 
452 
293 
159 
22 
37 
83 

331 
331 
246 
382 
370 
480 
269 
451 
181 
135 
321 
400 
450 
278 
286 
278 
480 
40 

427 
72 

238 
249 
486 
125 
127 
461 
16 

489 

failure 
function 
Fundamental Theorem of Calculus 
general cosine function 
general sine function 
general tangent function 
global maximum 
global minimum 
growth 
horizontal line test 
hypothesis 
identity 
implication 
increasing 
indefinite integral 
independent variable 
inflecting tangent 

instantaneous rate of change 
instantaneous velocity 
integrand 
integration by substitution 
interpolation 
interval notation 
inverse function 
kinematics 
laws of logarithms 
least squares regression line 
limit 
line of best fit by eye 
linear function 
linear regression 
linearity 
local maximum 
local minimum 
logarithm 
logarithmic scale 
logical connective 
many-to-one 

maximum turning point 
mean point 
median 
minimum turning point 

mode 
modulus 
motion diagram 

natural domain 
natural exponential 
natural logarithm 
negation 
negative definite 
non-stationary inflection point 
normal 
normal curve 

normal distribution 

INDEX 611 

492 
67 

376 
207 
207 
217 
326 
326 
133 
86 

246, 248 
234 
248 
321 
382 
450 
334 
267 
429 
383 
394 
461 

73 
86, 87 

426 
151 
464 
269 
460 
66 

464 
451 
326 
326 
149 
167 
248 
87 
33 

460 
483 
33 

483 
91 

428 
74 

138 
154 
248 
41 

334 
319 

508, 509 
507, 508
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one-to-one 

optimisation 
outlier 
parabola 
Pascal's triangle 
Pearson’s product-moment 
correlation coefficient 
period 
periodic function 
piecewise function 
point of discontinuity 
point of inflection 

pole 
positive definite 
power of a binomial 
principal axis 
probability density function 
probability distribution 
probability mass function 
product rule 
proof 
proof by contradiction 
proof by deduction 
proof by equivalence 
Pythagorean identity 
quadratic function 
quadratic inequality 
quantile 
quotient rule 
radian 
random variable 
range 
rate 

rate of change 
reciprocal function 
rectangular hyperbola 
reflection 
relation 
Riemann integral 
scale factor 
second derivative 
set notation 
sign diagram 
sine 
speed 
standard normal distribution 
stationary inflection point 
stationary point 
strength of correlation 
stretch 

success 
tangent 

tangent line 

transformation 
translation 

86 
53 

452 
33 
18 

455 
201 
201 
66 

269 
333,334 

461 
41 
16 

202 
507 
482 
484 
295 

246, 247 
255 
249 
253 
190 
31 
57 

522 
297 
175 
480 
72 

263 
346 
78 
78 

109 
66 

370 
105 
308 

73 
57 

181 
439 
519 
333 
326 
451 
105 
492 
182 
314 

100, 112 
100 

trigonometric function 
uniform discrete random variable 
unit circle 
velocity 
vertex 

vertical line test 
wave 
z-intercept 
y-intercept 
Z-distribution 

z-score 

204 
483 
181 
429 
33 
67 

202 
33 
33 

519 
519


